
Programming Languages and Target Platforms in
Malware - A Trend Analysis

1st

Julian Krieger
IT-Sicherheit

Hochschule München
Munich, Germany

krieger@hm.edu

Abstract—The growing field of programming languages influ-
ences every software engineer. Never before has there been such
an ever increasing number of possible programming language
choices when starting a new project. Compared to classic
programming languages like C, C++ or even Java, modern
choices provide features like simplicity, memory safety or the
ability to compile a project for multiple target architectures
at once. Indicators like the TIOBE Programming Community
Index or the PYPL Popularity of Programming Languages try to
measure popularity trends among programming language choices
via surveys or automated statistical analysis on code sharing
platforms.

The availability of a large set of choices has not only affected
application engineers but malware authors as well. By research-
ing available malware families and looking at reverse engineering
efforts, we hope find trends in programming languages chosen by
malware authors. At the same time, we look at malware target
platforms in the hope of tracing a possible correlation between
the crossplatform compilation feature of modern programming
languages like Go and Rust and malware which targets multiple
operating systems at once.

Index Terms—malware, trend analysis, cross platform mal-
ware, programming language trends

I. INTRODUCTION

Malicious software is often not limited to the actual
malware binary that ultimately performs the main task for
threat actors. In addition to destructive binaries, threat actors
may also use open source software intended to aid security
researchers for malicious purposes. For example, Command
and Control (C2) Frameworks are intended to help red team
hackers to aid them in infecting, overtaking and controlling
captured systems when penetration testing a company’s
network. C2s are also maliciously misused by some threat
actors to achieve their goals like adding a computer to their
botnet or encrypting their victim’s system and blackmailing
them into paying a ransom to regain access to their files
[1]. C2s employ a combination of worker computers and a
managing server, from which the former receive commands
or payloads (also: implants).

To target multiple systems at the same time, malware
authors may be interested in tools that are implemented
as platform agnostic as possible. A complete set of
malicious software may consist of multiple complex systems

implemented with varying technologies. Malware implants
sometimes also tend to evolve over time. If a malware author
finds their efforts at compromising systems thwarted by
security researchers or antivirus vendors, they may retrofit
their software with a different C2 platform. They may also
update their source code and redistribute it, sometimes
recompiling their source code to support more aggressive
persistence strategies. Alternatively, some opt to rewrite
their code entirely in a different programming language,
hoping to overcome signature based detection by completely
reimplementing core functionality [2] [3]. To assist their
efforts in targeting multiple platforms at once, they may
choose a modern programming language with the ability to
compile binaries for multiple operating systems at a time,
further aiding the programmer by supplying wrappers around
native operating system libraries.

Malware binaries are almost always found in an obfuscated
state, compiled to the binary format of their target architecture.
To hide them from operating systems and antivirus defence
systems or to defend against reverse engineers, malware
authors employ a number of different strategies. They may
opt to employ packers to compress their binaries, or even
use specialized software to hide textual data, cryptocurrency
wallet addresses or command line arguments and configuration
parameters used for remotely manipulate their software by
embedding these strings in functions that are only evaluated
at run time, thus concealing them from static analysis tools.

To successfully analyze a malicious packed binary, their
process memory (including data and the program itself) is
dumped from a sandboxed environment at run time. Security
professionals may then opt to employ reverse engineering
suites like Ghidra [4] or IDA [5] to reverse engineer the
piece of malware. Tools like these offer a large feature set to
simplify reverse engineering work. Among them are features
which may depend on knowing a binary’s target architecture,
compiler or information of the platform the binary was
compiled on or debugging symbols. One such example, IDA’s
FLIRT, tries to aid the reverse engineer by recognizing C and
C++ standard library functions and to consequently isolate
them [6]. This may spare the reverse engineer from doing

unneeded work when reversing a trivial library function that
is not part of the malware binary’s core functionality.

However, reverse engineering tools and suites rarely
adequately support exotic programming languages [2]. Some
programming languages may hamper a reverse engineer’s
efforts. Without a fitting decompiler or disassembler with
the ability to understand important compiler metadata,
reverse engineering tools lack the ability to gather valuable
information about a piece of software. Thus, knowing a
malicious binary’s original source language before starting
the reverse engineering process may provide extremely useful
information to tools which aim to achieve functionality
similar to FLIRT for programming languages different to C
and C++. For example, being able to successfully recognize a
piece of malware as being written in Rust, reverse engineering
suites may be able to detect a large part of uninteresting core
library functions. Those may provide run time functionality
like multithreading code, array bound checks or string
manipulation procedures which are ultimately uninteresting
for the reverse engineer’s task. Successfully marking them
as library code may aid in reducing a reverse engineer’s
workload.

This paper aims to determine a statistical trend analysis
on programming language choices in malware authorship. If
we are able to make an educated guess on the most popular
language with malware authors, we may be able to more
effectively steer the industry’s efforts for providing specialized
reverse engineering and analysis tool sets for the most popular
upcoming programming languages used for malware.

II. RELATED WORK

There have been a number of past efforts to categorize
malware source in correlation with programming languages.
Calleja, Tapiador, and Caballero showed an increasing use of
C/C++, Visual Basic and Delphi alongside a decrease in the
usage of Assembly in the early to mid 2000s [7]. They also
showed a growing inclusion of JavaScript, PHP and Python
in Botnets and RATS distributed via malware.

Furthermore, there has been past work in trying to find
a trend for malware target platforms. By first unpacking
their samples and subsequently analyzing the binaries PE
headers where available, Plohmann, Clauß, Enders, and Padilla
mapped 1792 malware samples categorized into 607 malware
families to their target platform [8] . They found that Mi-
crosoft’s operating systems were by far the most attacked
target among their samples: 83.2% of malicious software
samples they analyzed were equipped to deal with varying
versions of Windows. They then collected their data in an
indexing data set with the name Malpedia. Malpedia has been
bootstrapped at its initialization with data from 2012 to 2017.
Further samples are being steadily added to the data set since.

III. PROPOSED METHOD

In this paper, we want to achieve two goals: From latest
data, we want to gather recent information concerning mal-
ware and then check if we can collect that information and
subsequently try to draw meaningful trends about the evolution
of a) malware target platforms and b) malware architects’
programming language choice.

There are multiple approaches to analyzing malware
binaries and recognizing their source language. One of them
is the open source tool Detect-It-Easy (DIE) [9]. DIE is able
to scan a given binary file and will then return information
about the packer, the compressing tool or the virtualization
software used to obfuscate the binary. Moreover, it can also
make a guess based on different criteria about the compiler
and linker that was used to translate the original source code
into the binary format for the target platform. If the binary is
successfully unpacked, DIE is also able to infer the source
language by comparing the binary’s internal information to a
set of rules which may match it to output which is normally
generated by a specific programming language compiler. If
enough criteria match, DIE will return the most likely source
language candidate. For example, DIE matches routines
provided by the compiler to safely check and array’s bounds
on access at run time – among other criteria – to the Rust
programming language.

To analyze malware binaries with DIE, one could use a
prepared data set and then go on collect information returned
by analyzing each binary with DIE’s command line tool.
We opt to use the Malpedia data set, which already contains
information of somewhat defused and unpacked malware
partially analyzed with DIE. They also combine multiple
occurrences of unique malware distributed with different
packers into (at the time of writing) 2662 malware families.
The data set records information about maliciously acting
software from 2017 to 2022, including but not limited to the
malware family a specific piece of malicious software might
belong to. Currently, they also do provide a description and
past analyzation efforts for a subset of their data set. At the
time of writing, the binary’s source language is missing. The
data set features malware implants as well as droppers and
command and control frameworks used in malicious ways.
Since collecting malware families in the Malpedia data set
is an ongoing effort and samples are steadily added to the
Malpedia data set, we can have a look at Plohmann, Clauß,
Enders, and Padilla’s [8] analyses from 2017 and compare
them (if applicable) to changes in trends after their paper’s
publication.

To filter useful information from our data set, we inspect
each entry for metadata information, including but not
limited to textual information about past analyzing or reverse
engineering efforts by third parties. If we can successfully
identify for a malware family if a reverse engineer mentions
a specific programming language in their past analyzing

efforts, we can try to map an original source programming
language to that entry. It is also important to note that some
pieces of malicious software employ multiple programming
or scripting languages to achieve their target. One such
example going by the name of DarkWatchman employs the
use of JavaScript and C to dynamically compile a C# key
logger and will then go on to try to persist the software on
the target computer. There is also malware which is first
written in one programming language and later is rewritten
in a different choice, one example being IceXLoader, which
was first scripted in AutoIT and later rewritten in Golang [3].

The metadata in the Malpedia data set not only includes
information about past reverse engineering efforts, but each
malware family’s target platform and an updated entry, which
denotes the date the family was last successfully analyzed.
This allows us to try to find interesting correlations between
target platforms and programming languages and finally en-
ables finding a trend of attacked target platforms and to
subsequently compare these results to the ones mentioned in
the original Malpedia paper.

We can also combine date metadata with our gathered
matches of malware and source programming languages to
analyze the evolution of the popularity of programming lan-
guages used for malware in recent years. We will then go on to
compare that data to programming language trends in malware
in Calleja, Tapiador, and Caballero’s [7] paper.

IV. ANALYSIS

To get a first insight into our data set, we extract the
target platform from each available piece of malware and
look at their total distribution in the data set (see Fig. 1). For
a better overview, we combined Malpedia’s platforms win,
ps1 (PowerShell) and vbs (Visual Basic Script) into a single
Windows platform. The latter two are theoretically usable
on Unix or platforms other than Windows, but not without
considerable effort or by first installing Windows emulation
software like Wine. Since most non-Windows platforms
provide scripting language alternatives similar to PowerShell
but native to their own operating system and since we can
realistically presume that a threat actor would choose an
already existing tool to keep as low of a profile as possible,
we then go on to assume that if PowerShell is included
in a piece of malware, the primary target is most likely a
Windows based system. We also combined the Malpedia
categories py, asp, php and jar into the class Agnostic, since
their corresponding programming languages Python and PHP
or frameworks like .NET and the Java Virtual Machine aim
to be cross platform solutions.

Moreover, we can combine rare categories like Symbian
(a discontinued mobile device operating system) and NetApp
FAS (a data storage system) into the Other category.
Finally, since malware targeting Windows far outnumbers the
combined counts of every other target platform, we display
each the number occurrences on malware for each platform

W
in

do
w

s

U
ni

x

A
nd

ro
id

O
SX

A
gn

os
tic

W
eb

iO
S

O
th

er

0

5

10

O
cc

ur
en

ce
(l

og
2)

Fig. 1: Platforms Targeted by Malware

in a logarithmic scale to keep them all visible.

We can then go on to have a look at the evolution of
the malware attacking the respective platforms over time.
This immediately shows a clear picture on how dominating
malware targeting Microsoft’s operating system is. Even
with the growing number of devices with differing operating
systems, the number of malware targeting windows systems
seems to be growing at a rapid pace. In Fig. 2 we show
the evolution of malware targeting platforms different from
Windows, by temporarily excluding it from the data set.
Devices running OSX or various Android operating systems
seem to experience a strong increase in being targeted by
malware, though the number of malicious software aiming
for OSX or multiple platforms seems to be increasing
as well. Malware running on the browser, specifically on
websites (for example cryptocurrency miners which try hide
in popular open source JavaScript libraries) is also becoming
increasingly popular. Interestingly, when comparing the
mobile operating systems Android and iOS there seems to be
a stark difference: The former is more than 20 times more
like likely to be the victim of targeted malware, even though
Android devices only outnumber iPhones in a factor of
around 3:1. It is unclear where Apple’s success in the defense
of their mobile operating system comes from, but their effort
to only allow verified software from their App Store to run
on their devices could be a deciding factor (among others)
[10] [11].

Next, we search all malware families’ to identify useful
metadata within the Malpedia data set and subsequently go
on to find entries with existing reverse engineering efforts (as
shown in Fig. III). Out of the 2662 samples in the Malpedia
data set, 989 (37.5%) have metadata information that can

Fig. 2: Evolution of Malware Target Platforms (excluding
Windows)

be used to discover a possible source language. Next, we
need to preprocess the textual information included in the
metadata’s description field. After modifying our text into
lower case, we replace any special characters except the
”#” and ”+” characters with white spaces. We also keep the
term ”.net” so we can successfully identify if the description
of malware matches languages on the .NET stack. Finally,
we can search the description for occurrences of sigils
matching programming languages provided we have a large
list of the latter. Doing this, we can match possible source
languages to 317 families (32% of families with metadata
information). We then manually verified each match to check
if the programming languages found in the metadata were
actually identified as a source language, instead of only
being mentioned offhandedly. By doing this, we can filter
out all entries where the reverse engineer did not assign a
source language to a malware family. In Fig. 3 we can see
the distribution of programming languages in the data set by
counting the occurrence of every unique source language.

For compiled languages or those shipping with a run
time, we can observe that the programming languages .NET
and Golang occur most often in the data set. Interestingly,
PowerShell scripts are used far more than bash scripts (or any
Unix compatible scripting language). This directly correlates
to the distribution of target platforms in Fig. 1. The least used
languages according to the data set are Rust, D and AutoIT.

By mapping malware family’s source languages to the
family’s update time, we receive a distribution of programming

.N
E

T
G

ol
an

g
Po

w
er

Sh
el

l C
Ja

va
Sc

ri
pt

Py
th

on
D

el
ph

i
C

++ C
#

PH
P

Ja
va

V
is

ua
l

B
as

ic
N

im
R

us
t D

A
ut

oI
T

B
as

h

0

20

40

60

80

Sh
ar

e
in

th
e

da
ta

se
t

Fig. 3: Programming Languages in Total

languages used for malware each year (as shown in Fig. 4).
Noticeably, we can observe the addition of the previously
unrecorded languages Golang, Delphi, PHP, Python in 2018.
It also features PowerShell for the first time. In 2019 and
2020 respectively, D and Nim mark their first entries in the
data set. Recording of malware written in Visual Basic was
initially high, but decreased massively in the following years.
Usage of C seems to have had it’s highest point in malware
that was analyzed in 2018, but after that it has entered a
continued decline.

Finally, to get an insight into each programming language’s
growth from year to year, we calculate how often every
language occurs each year and compare that to the previous
years (see Fig. 5). In this plot, we can observe a massive
increase in the usage of .NET in 2022 compared to
previous years. We can also observe that usage of almost
all programming languages seems to be increasing, maybe
indicating that the distribution of malware is increasing in
2022 altogether. Alternatively, efforts to analyze and add
malware to the Malpedia data set could be the reason behind
the jump in numbers.

V. IMPLICATIONS

If we take a look at both the distribution and the growth
of the different platforms over the time frame from 2017 to
2022 in the Figures 1 and 2 and then go on to compare them
to the analyses in the Malpedia paper, we can observe that
Windows fell from being the target of 83% of malware to
being the destination of 75% of malware in 5 years. There is
also a clear trend in malware targeting Unix platforms: The
occurrence of malicious software in ELF format increased

2017 2018 2019 2020 2021 2022
0

0.2

0.4

0.6

0.8

1

Timeframe

N
or

m
al

iz
ed

sh
ar

e
in

da
ta

se
t

.Net C C++ Python
Go JavaScript PowerShell PHP
Bash CSharp D Delphi
Java Nim Rust VisualBasic
AutoIT

Fig. 4: Programming Language Distribution by Year

Fig. 5: Evolution of Malware Target Platforms

TABLE I: Comparison of Malpedia’s data in 2017 and 2022

Platform Malpedia 2017 Platforms 2022 Increase
Windows 505 1988 293%
Android 34 190 458%

OSX 29 80 175%
Unix 24 218 808%
iOS 2 8 300%

Agnostic 12 64 433%

TABLE II: Programming Languages used on different Plat-
forms

Programming Language Windows Unix 2022 Other
.NET 62 0 2

C 59 8 7
Go 21 14 1

Python 10 2 9
Rust 4 3 0

with a factor of 9 in the 5 year time frame (see Table I).
Finally, multi platform and Android malware experiences a
strong increase in numbers as well.

We can also compare the original source programming
languages we found in our data set to the data in Calleja,
Tapiador, and Caballero’s [7] paper. They recorded a high
number of malware using manual assembly until the mid
2000’s. We can further confirm this trend, since there exists
only one entry in the Malpedia data set which has been
manually written in FASM. They also record a slight increase
in the usage of the C programming language, which correlates
with the statistics in Fig. 5. Malware authors also seem to
have switched from DOS Batch to PowerShell on Windows
platforms, since there seems to be no entry in our data in
which a batch file could be found. Instead, PowerShell is
steadily increasing in popularity. Finally, Golang (which was
released in 2012) seems to be picking up speed in 2018
and was virtually unused before. .NET growing as a popular
choice is also especially interesting when combined with the
fact that virtually every language on the .NET stack is falling
in popularity in the benevolent software community [12] [13].

If we look at programming languages that are used for
cross platform purposes in Table II, we find that Rust, Python
and Golang are especially popular, with half of all malware
targeting Unix systems being written in Go. Even though
.NET has the capability to be compiled for multiple platforms,
virtually every .NET malware explicitly targets Windows
platforms. Some malware use the capability of Golang do
be easily compiled for multiple systems alike, one example
being the RAT Chaos [14]. Golang’s compiler gobuild and
its accompanying standard library provide abstractions over
system APIs, and the former can compile binaries for a
wide array of target platforms without the need of extensive
configuration.

VI. LIMITATIONS

There are multiple limitations within the data set that need
to be mentioned. At a first glance, the chosen Malpedia corpus
with (at the time of writing) 2662 families may seem too
small to gain insights and to subsequently derive an accurate
trend. However, Plohmann, Clauß, Enders, and Padilla argue
that the same malware source code is often distributed
via a multitude of packers, thus artificially increasing the
number of malware in circulation which seem to be unique
at first glance. Since the Malpedia corpus is a collection of
unpacked pieces of malware, they argue that their corpus is
still representative [8]. This effect is further intensified by the
fact that not every malware family contained useful metadata.

Moreover, there are some discrepancies between the source
language categories C# and .NET. There exist a multitude
of languages that ship with the .NET core environment and
run time, including but not limited to F#, the Iron- versions
of Ruby and Python and C# itself, the latter being the most
popular language on the .NET stack. It is not known whether
researchers could only determine that a piece of malware was
using the .NET run time without being able to identify the
actual source language.

Finally, since the Malpedia data set only provides us the lat-
est date on which information to a malware family was added
or updated, our trend analysis may prove to be unreliable if a
large number of data points were updated after a long period of
inactivity. Since the Malpedia API does not provide a way to
access a malware family’s change history, we were unable to
identify sample sets which could’ve been erroneously assigned
to the wrong time frame. Instead, we hope to assume that
insights on malware arrive relatively close to the malware’s
appearance.

VII. CONCLUSION

With the ever increasing number of mobile phones, IoT
devices and cloud farms, malware authors are shifting their
efforts from targeting Windows to attacking Android and Unix
based platforms. However, for the time being Microsoft’s
Windows seems to still be the most prominent target for
malicious software.

REFERENCES

[1] J. Gardiner, M. Cova, and S. Nagaraja, Command &
Control: Understanding, Denying and Detecting - A re-
view of malware C2 techniques, detection and defences,
arXiv:1408.1136 [cs], Jun. 2015. DOI: 10.48550/arXiv.
1408.1136. [Online]. Available: http : / /arxiv.org /abs /
1408.1136 (visited on 12/19/2022).

[2] B. R.
bibinitperiod I. Team, “Old Dogs new Tricks: Attackers
Adopt Exotic Programming Languages.”

[3] J. S. a. R. Tay, New IceXLoader 3.0 – Developers Warm
Up to Nim — FortiGuard Labs, en, Section: Threat
Research, Jun. 2022. [Online]. Available: https://www.
fortinet.com/blog/threat-research/new-icexloader-3-0-
developers-warm-up-to-nim (visited on 12/19/2022).

[4] A. N. S. Agency, GitHub - NationalSecurityA-
gency/ghidra: Ghidra is a software reverse engineering
(SRE) framework, Mar. 2019. [Online]. Available: https:
//github.com/NationalSecurityAgency/ghidra (visited on
12/19/2022).

[5] Hex-Rays Decompiler. [Online]. Available: https://hex-
rays.com/decompiler/ (visited on 12/19/2022).

[6] IDA, IDA F.L.I.R.T. Technology: In-Depth – Hex Rays,
en. [Online]. Available: https://hex-rays.com/products/
ida/tech/flirt/in depth/ (visited on 12/18/2022).

[7] A. Calleja, J. Tapiador, and J. Caballero, “A Look into
30 Years of Malware Development from a Software
Metrics Perspective,” en, in Research in Attacks, Intru-
sions, and Defenses, F. Monrose, M. Dacier, G. Blanc,
and J. Garcia-Alfaro, Eds., ser. Lecture Notes in Com-
puter Science, Cham: Springer International Publishing,
2016, pp. 325–345, ISBN: 978-3-319-45719-2. DOI: 10.
1007/978-3-319-45719-2 15.

[8] D. Plohmann, M. Clauß, S. Enders, and E. Padilla,
“Malpedia: A Collaborative Effort to Inventorize the
Malware Landscape,” The Journal on Cybercrime &
Digital Investigations, vol. 3, 2017.

[9] Horsiq, Detect It Easy, original-date: 2014-06-
01T21:37:32Z, Dec. 2022. [Online]. Available:
https://github.com/horsicq/Detect- It-Easy (visited on
12/17/2022).

[10] Apple, App security overview, en. [Online]. Available:
https : / / support . apple . com / guide / security / app -
security- overview- sec35dd877d0/1/web/1 (visited on
12/18/2022).

[11] M. S. Ahmad, N. E. Musa, R. Nadarajah, R. Hassan,
and N. E. Othman, “Comparison between android and
iOS Operating System in terms of security,” in 2013 8th
International Conference on Information Technology in
Asia (CITA), Jul. 2013, pp. 1–4. DOI: 10.1109/CITA.
2013.6637558.

[12] T. S. EV, Tiobe Index, en-US. [Online]. Available: https:
//www.tiobe.com/ (visited on 12/19/2022).

[13] PYPL PopularitY of Programming Language index, en.
[Online]. Available: https://pypl.github.io/PYPL.html
(visited on 12/19/2022).

[14] Linux Cryptocurrency Mining Attacks Enhanced via
CHAOS RAT, en-US, Section: research, Dec. 2022.
[Online]. Available: https : / / www . trendmicro . com /
en us/research/22/l/linux-cryptomining-enhanced-via-
chaos-rat-.html (visited on 12/19/2022).

