
Hochschule für angewandte Wissenschaften
München

Fakultät für Informatik und Mathematik

Master’s Thesis

Master of Science

in course of studies Informatik

Secure IoT Bootstrapping: A
BRSKI Extension for Constrained

Devices

Author: Julian Krieger
Matriculation number: 01084121
Submission Date: 17. January 2025
Supervisor: Prof. Dr. Thomas Schreck
Advisor: Prof. Dr. Stefan Wallen-

towitz

I confirm that this master’s thesis is my own work and I have documented all sources and
material used.

München, 17. January 2025 Julian Krieger

Acknowledgments

First and foremost, I would like to express my deepest gratitude to my advisor, Prof. Dr.
Thomas Schreck, for his invaluable guidance and unwavering support throughout this
journey. His insights and encouragement have been instrumental in shaping this work and
pushing it to its highest potential. I am profoundly thankful to my colleague, Tobias Hilbig,
whose unparalleled advice and collaborative spirit have been a source of inspiration and
motivation. Special thanks go to Steffen Fries at Siemens, who demonstrated exceptional
patience and generosity in answering my countless questions about the BRSKI protocol
family. His willingness to share his expertise was pivotal in deepening my understanding
and advancing this work. I also would like to thank Prof. Dr. Stefan Wallentowitz and
Prof. Dr. Peter Trapp for allowing and encouraging me to switch my master’s studies to
IT-Security, even though the deadlines for registration had long passed. When I came
to Munich, I did not originally intend to pursue this field, but I fell in love at first sight
when I randomly visited a lecture. Their support enabled me to embark on this path,
which has since not only become my passion, but has also led me to pursue a PhD in the
field. Finally, I want to thank my family and friends for their unwavering support and
encouragement.

To all who have supported me during this journey, whether through academic guidance,
moral support, or inspiration, I extend my heartfelt appreciation. This thesis would not
have been possible without your contributions.

Abstract

The integration of constrained IoT devices into enterprise networks presents signifi-
cant challenges, particularly when these devices lack initial network connectivity due to
security constraints. This thesis addresses these challenges by investigating existing boot-
strapping solutions and developing a novel approach tailored to the unique requirements
of such devices. After an analysis and comparison of various enrollment protocols, none
fully met the constraints and connectivity requirements. To bridge this gap, this work
proposes and implements cBRSKI-PRM, a fusion of two promising protocols: BRSKI-PRM
and cBRSKI. This hybrid approach enables a pledge-passive, one-touch enrollment process
by leveraging Bluetooth Low Energy (BLE) as an out-of-band communication channel.
This process allows devices without initial network connectivity to enroll securely.

To validate the feasibility of cBRSKI-PRM, a prototype was implemented using Rust and
deployed an Android phone and on the ESP32 platform. The security of the protocol was
evaluated by analyzing potential attack vectors introduced during the design process and
assessing the changes made to the original protocols. This evaluation demonstrated the
solution’s robustness and its effectiveness in securely enrolling constrained IoT devices
into enterprise networks, addressing a critical gap in IoT device management.

v

Contents

1 Introduction 1
1.1 Motivation & Relevancy . 1
1.2 Scope . 2
1.3 Research Questions . 3

2 Related Work 5
2.1 Pre-provisioned Keys . 5
2.2 Embedded Attestation . 6
2.3 ACME . 6
2.4 Enrollment over Secure Transport . 7
2.5 BRSKI . 7

3 Background 9
3.1 Enrollment . 9
3.2 Bluetooth Low Energy . 10
3.3 The Rust Programming Language . 11
3.4 BRSKI-PRM . 13
3.5 cBRSKI . 16

4 Requirements 17

5 Architecture 21
5.1 Pledge . 21
5.2 Registrar-Agent . 22
5.3 Domain-Registrar . 22
5.4 MASA . 23
5.5 Proposed Protocol Extension . 23

6 Implementation 27
6.1 BRSKI-PRM Prototype . 27
6.2 cBRSKI-PRM . 30

6.2.1 Switching from JSON to CBOR . 30
6.2.2 Bluetooth Low Energy . 34

6.3 Android Registrar-Agent . 37
6.4 ESP32 Prototype . 40

6.4.1 Research and Setup . 40
6.4.2 Pre-Enrollment Status Query . 41
6.4.3 ESP32 firmware . 42

7 Evaluation 45
7.1 Comparison of BRSKI-PRM and cBRSKI-PRM 45

vii

Contents

7.2 Attack Vectors . 47

8 Discussion & Future Work 49

9 Conclusion 51

Bibliography 55

Glossary 61

A Listings 63

B Tables 71

C Certificates 73
C.1 Pledge Certificate . 73
C.2 Registrar-Agent Certificate . 74
C.3 Registrar Certificates . 75
C.4 MASA Certificates . 78

D Images 83

viii

1 Introduction

The number of Internet-of-Things (IoT) devices worldwide is expected to grow to more
than 29 billion devices in 2030 [71] [63]. With the rapid proliferation of IoT devices
both in business and home automation, security has become increasingly important.
A valid threat and protection model is required not only to strengthen the security of
existing devices and the entire management process like bootstrapping/enrollment and
device off-boarding processes. Ideally, devices must first establish trust by providing
identity and authenticity proofs. To establish trust, peripheral devices ask their users for
authentication via a password or biometric information connected with an institutionally
known and verifiable identity. Embedded devices cannot rely on such procedures because
they are shipped with pre-installed firmware to the customer and must prove their
authenticity via automation. They are low-powered devices that usually lack means of
identity beyond their physical network adapter address, vendor-chipset combinations, or
serial number, all of which are easily forgeable attributes that cannot be relied upon for
encryption. This creates a principal problemwhen evaluating the initial device installation
and bootstrapping process: To gain enough trust to enroll, each device must provide a
unique proof of authenticity to the trust-verifying entity. This calls for a trustable
hardware-backed attestation token that differs from the aforementioned identifiers. The
attestation token must be unique to the device, must be unforgeable, and must prove its
authenticity to the trust-verifying entity. Meeting the particular security requirements of
the enrollment process is crucial to the overall security of the device.

1.1 Motivation & Relevancy

Internet of Things devices face security challenges unique to their application domain
[1]. Compared with conventional computing devices, IoT devices are often low-powered,
have limited storage space, and are frequently deployed in large numbers. They are often
tiny, battery-powered devices that may be deployed in remote locations, making them
difficult to manage. Regularly ordered in large numbers from foreign vendors, they are
a prime candidate for being the weakest link in a network [57] or are targets in supply
chain attacks [53] [67]. Furthermore, one must assume that the shipment could contain
malicious parasitic companions, or that a malevolent on-site technician could replace a
unit with a rogue device [42] [50]. In order to increase security, devices should be required
to provide proof of their authenticity and identity before they are permitted to access the
network. In essence, each corresponding device needs to build a trust relationship with
their communication partner.

Customers often have little influence on the manufacturing process of these devices, and as
such, they cannot rely on a vendor to provide sufficient security guarantees for hardware
or software. To secure these devices, a security model is required to be established, which

1

1 Introduction

the customer controls, and which is independent of on-site personnel and end users. To
guarantee security right from the beginning, a secure enrollment scheme must be created
that is built with security at its forefront and which is as automated as possible. It should
also withstand supply chain attacks and rogue actors eavesdropping. While there exist
some schemes for secure bootstrapping of consumer or high-powered devices, hardware-
limited IoT devices bring up unique challenges that need to be addressed. Creating a
secure enrollment scheme specifically focused on the hardware constraints of IoT devices
is the main motivation for this work.

1.2 Scope

The focus of this work is limited to securing the on-site enrollment process. It is also the
first step entirely in the control of the device customer. A suitable enrollment scheme,
which best fits the unique requirements to be developed and discussed later, will thus
be found and built upon. To make the bootstrapping process as secure as possible, all
participating entities need to be able to provide guarantees of identity and proof of
key possession to each other. For example, the domain registration authority may only
provide network access to a target device if it can prove its identity. Identity-proving
and encryption material need to be available from start to finish of the bootstrapping
process. Only then can the required security assurances be met: Any IoT device that
enters and exists within the customer domain must be known before and during its entire
existence, enabling the keeping of records throughout the device lifecycle. Furthermore,
a well-defined process allows a granular management of communication permissions
as well as a way to update identification and transmission material, such as certificates
required for connectivity in enterprise networks.

To enable this workflow at scale, a way of automating the entire enrollment process as
much as possible is needed. Providing a zero-touch or one-touch enrollment process
is necessary to guarantee bootstrapping with minimal friction. To accomplish the boot-
strapping process, all stakeholders must act with security in mind, from supply chain
manufacturers providing read-only attestation keys to service technicians involved in
the enrollment process and finally technical customer domain managers who contribute
the essential infrastructure. Ideally, each partaking entity needs to ensure to all other
communication partners of their identity before any data exchange takes place. Data
transfer must be encrypted at best, and integrity must be provided by signatures when
encryption is not possible at the specific point in time. Limited machines work with only
tiny amounts of stack space and restricted hardware access. Many are not fitted with
real-time clocks and operate with minimal power. In large scales, embedded computing
systems come with software flashed at the end of the manufacturing process. These
limitations impose security challenges, like the restricted choice of initial network access
strategies or inadequate storage space for public key material and certificates.

2

1.3 Research Questions

1.3 Research Questions

The primary focus of this study is the development of a secure and proven solution for the
enrollment process of embedded devices. The general use case has been described in the
previous section, so the specific requirements and their needs must now be inferred. The
following research questions are presented as a comprehensive overview of the challenges
involved.

RQ1What are the feature requirements for a networkless, minimal-touch enrollment
protocol for hardware constrained devices? The required scalability, security, seam-
lessness, and networkless nature of the enrollment process were considered. It must
also be taken into account that constrained IoT devices often lack the computational
power to perform complex cryptographic operations. In addition, they are commonly
limited in terms of memory and storage, which can make it difficult to store and manage
cryptographic keys and public key material.

RQ2 What extensions to an existing protocol provide compatibility for hardware
constrained devices? To answer this question, existing enrollment protocols had to be
explored first. The extensions needed that are suitable for fulfilling the requirements
were then considered. Next, the security guarantees, scalability, and complexity of the
protocols are discussed. Furthermore, the compatibility of the protocols with embedded
devices and the ease of implementation were also explored. Finally, the extensions needed
to provide compatibility with a specific embedded platform were planned.

RQ3 How can the proposed solution be implemented on low powered hardware? To
arrive at the answer to this research question, the challenges and considerations unique to
embedded hardware were explored. Various embedded platforms were compared based
on hardware assessments that featured limitations, constraints, and advantages. Next, a
specific hardware framework was selected, for which a prototype was developed within
the constraints of the requirements emerging from choosing a protocol specification
document in RQ1. To evaluate these research questions, the base enrollment protocol
was compared to the novel solution. Potential new attack vectors that might have been
introduced by the extension of the original protocol were also considered. Both of these
are further explained in Chapter 7

3

2 Related Work

This section provides the context for this study by exploring previous studies on secure
device enrollment. Initially, research is highlighted that aligns with the stated objective
of securely incorporating devices into a network. Next, previous work is explored which
focuses on device authentication but not necessarily in the context of bootstrapping.
Finally, a short overview is provided of published enrollment solutions directly related to
this study, and from which inspiration was drawn for the resulting solution.

2.1 Pre-provisioned Keys

A way to provide security during the bootstrapping process is to ship IoT devices with
pre-shared keys, where a private key is securely stored on the device and a corresponding
public key is shared with the network operator at some arbitrary point in time. Shipping a
device with pre-shared keys has, however, some drawbacks: Pre-provisioning a private key
creates the need to install it at some time during the manufacturing process. The process
of sharing the corresponding public key with the network operator can be implemented in
various ways, such as printing the key on a sticker, storing it in a QR code, or transmitting
it over a secure channel. Some of these methods are more secure than others, and
the choice of method depends on the particular case and the security requirements of
the given network. A single secret alone is not enough to provide device identity and
trustworthiness, because it carries the risk of being leaked at some point in the supply
chain [68]. Ideally, these private keys must be unique to each device, and since the
resulting public key is unique as well, a potentially large list of device public keys must be
shared with the customer, which requires substantial management effort by the network
operator. A leaked secret opens up security hazards, which may allow malicious actors to
eavesdrop, and which potentially enables the installation of foreign hardware. On initial
network access, the network operating service may offer authenticating credentials to the
device, often in the form of an X.509 certificate. When the enrollment process relies solely
on pre-shared keys, devices have no way to verify the authenticity of the network operator
using this payload. Therefore, in the context of device enrollment, some standards define
initial communication to work without client-side authentication, instead opting for a
strategy called Trust On First Use (TOFU) [7] [65].

When IoT devices are enrolled with pre-provisioned keys, some strategies employ de-
centralized PSK solutions to provide a secure and decentralized way to manage device
identities and keys. In Ethereum for Secure Authentication of IoT using Pre-Shared Keys
(PSKs) [31], the authors proposed a system in which IoT devices store their private key,
and the public key exists in a decentralized fashion on the Etherium blockchain. By
making use of smart contracts, the system uses distributed ledger technology to provide a
secure and tamperproof process to manage device identities. With this, the authors aim to

5

2 Related Work

provide a secure and reliable strategy to authenticate IoT devices in a decentralized man-
ner, without the need for a public key infrastructure or a centralized certificate authority.
They validated their approach by implementing a prototype, that they evaluated using a
simulation approach.

2.2 Embedded Attestation

To gain trust and guarantee device integrity, embedded devices can ship with so-called
attestation keys. Various protocols exist that aim to provide a scalable proof-of-integrity
process. They consider that embedded devices often ship into decentralized target do-
mains susceptible to imperfect conditions, network disruptions and device outages. One
example is PASTA [37], a distributed attestation protocol for autonomous embedded
systems, which defines a remote key attestation protocol for millions of interconnected
low-powered embedded devices by introducing a concept of collective attestation, wherein
multiple provers verify groups of devices forming multisignature pools, thereby avoiding
a computationally intensive single source of truth. In essence, most attestation solutions
share one feature: They rely on guaranteeing trust through a remote attestation key with
secure properties, wherein such an attestation key is a private cryptographic key generated
by an entity that in turn, can prove the key’s ownership to a remote party. The key is best
generated and stored inside a secure enclave isolated from the main processing unit [72]
[43] [66]. Providing a valid attestation key is crucial in order to implement any secure
enrollment protocol, where device integrity and authenticity must be guaranteed.

2.3 ACME

Automatic Certificate Management Environment (ACME) [2] is a protocol designed to
automate the process of issuing and managing digital certificates, primarily for securing
websites using HTTPS. In the context of enrollment, ACME can be used in conjunction
with different tools to automate the provisioning process of device certificates. For
example, certbot [23] is a popular tool that uses the ACME protocol to automate the
process of obtaining and renewing certificates for web servers. X.509 certificates used
for HTTPS are not that different from device attestation certificates that can be used for
TLS and network access. Therefore, the initial aim was to adapt ACME to handle the
provisioning of device-identifying certificates. According to the specification document,
clients can request and retrieve certificates from a central service in an automated manner.
However, they must initially establish a Dynamic Host Configuration Protocol (DHCP)
connection and employ a discovery scheme like DNS Service Discovery (DNS-SD) to find
the central service. Hence, for devices without a network connection, this approach is
not feasible. Introducing a proxy device that acts as a bridge between the device and the
central service could theoretically overcome this limitation. Taking this approach would,
however, introduce additional complexity, because the proxy exchange would need to be
planned securely, which is nontrivial and out of scope for this work.

6

2.4 Enrollment over Secure Transport

2.4 Enrollment over Secure Transport

“Enrollment over Secure Transport (EST)” defines a protocol for secure certificate en-
rollment and management using HTTPS as the transport mechanism [52]. The main
purpose of EST is to provide a mechanism for devices to automatically enroll and obtain
X.509 certificates, which are used in various security protocols, such as TLS/SSL. EST
defines communication between an enrollment server and clients, which are preconfig-
ured with key material for mutual authentication and authorization. It supports mutual
trust verification based on a variety of schemes, such as pre-shared secrets or trust anchor
information in the form of public key certificates. Clients initiate a secure communication
session via an encrypted channel. They then follow the protocol standard by requesting
information from EST services distinguished by URI paths and parameters. When using
certificates for authorization, a certificate authority server co-located with the EST server
issues an end-entity certificate with a built-in device identifier upon successful enroll-
ment. EST is primarily defined for HTTP-only communication in the specification. The
certificates issued in EST are PKCS7 objects called Cryptographic Message Syntax (CMS)
documents, which are cryptographically protected messages – either by signature, digest
or encryption [32]. The domain certificate authority can certify authorization privileges
for the Pledge’s certificate request by analyzing the security credentials used in the TLS
connection. While EST can enroll devices into a local domain with identifying X.509
certificates, devices must already have joined a network previously before enrollment can
begin.

2.5 BRSKI

In the realm of secure device bootstrapping, Bootstrapping Remote Secure Key Infras-
tructure (BRSKI) has emerged as a foundational protocol [51]. BRSKI defines the secure
initiation process of devices into pre-existing network environments. This section gives a
brief overview of existing research and implementations surrounding BRSKI, BRSKI en-
hancements and existing work in the context of IoT devices. Post-bootstrapping zero-trust
strategies will also be looked at to fortify device security after successful enrollment.

BRSKI is a fairly recent protocol as of time of writing, having been published as RFC
8995 and which was recently formally verified [62]. It defines a zero-touch bootstrap-
ping process of a so-called Secure-Key-Infrastructure using a three-piece combination
of manufacturer-provided components and a customer-domain authority. The former
consist of a pre-installed manufacturer device certificate, a manufacture provided Initial
Device Identifier and a vendor managed authorizing service. For them, BRSKI relies on
other internet standards for the specification of data transfer formats and endpoints. The
architecture and enrollment process defined within BRSKI is based upon Enrollment
over Secure Transport (EST), using its capabilities for the request and issuance of domain
specific device certificates [51] [52]. The process of bootstrapping a device comes with the
explicit goal of deploying secure key material in compliance with the local domain onto a
device.

7

2 Related Work

MASA Domain PKI/CA

EST-ServerPledge

1

2

3

4

5

6

Figure 2.1: The architecture behind RFC 8995 [51].

Correctly implemented, BRSKI provides the benefit of a fully automated device enrollment
process where security be guaranteed for all bootstrapping operations in the entire process
chain. The process behind BRSKI is shown in Figure 2.1 and works as follows: Once
powered up and connected to the local network, the device – or Pledge – starts the
bootstrapping process. By making use of the manufacturer provided PKIX certificate,
the Pledge signs a request for an imprinting token. After discovering the domain’s EST
service via discovery mechanisms similar to DHCP or DNS-SD, the Pledge sends an
initial TLS handshake to the Registrar’s EST service. This TLS handshake includes a
certificate belonging to the Domain-Registrar’s PKI infrastructure, which the Pledge now
uses among other data to form a request for an enrollment token, which is sends to the
Registrar’s EST service (1). This EST service is a service as defined in RFC 7030 [52],
which has been extended for functionality in BRSKI. Note that the Registrar’s certificate
is only provisionally accepted at this time, as the Pledge has not yet the ability to verify
the Registrar’s identity. The Registrar in turn makes an informed decision on whether
to accept this token request or not (2). If the token request is accepted, the Registrar
sends a request, for an imprinting token to a manufacturer provided service, called
Manufacturer Authorized Signing Authority (MASA) (3). It uses the Pledge’s identifier,
which is a certificate carrying a unique extension, to locate the correct MASA service.
The Registrar also includes a domain specific trust chain in the form of a certificate
chain, which includes the CA certificate that signed the EST server’s TLS certificate. This
imprinting token is a signed artifact, which is known in BRSKI and similar protocols as a
voucher [73]. The MASA creates this Voucher token and signs it before sending it back
to the Domain-Registrar (4), examined and inspected for possible tempering (5), before
being sent to the Pledge (6). The Pledge can now both authenticate the Voucher object and
the Registrar’s identity, since the Voucher token contains sufficient information to verify
the Registrar’s certificate. Since all parties have now verified each other’s identity, the
Pledge can now request a domain certificate from the Registrar’s EST service as defined in
RFC 7030 [52].

8

3 Background

An overview of the background information necessary to understand the research pre-
sented in this thesis is provided in this chapter. First, details about the enrollment process
and the challenges that arise when bootstrapping IoT devices will be discussed. Next,
Bluetooth Low Energy (BLE) will be introduced, and the knowledge needed to understand
the parts of the Bluetooth Low Energy (BLE) protocol used in this work will be detailed.
After that, the Rust programming language will be introduced, and its suitability for
developing secure IoT applications will be explained. Finally, the BRSKI protocol and
its constrained variant Constrained Bootstrapping Remote Secure Key Infrastructure
(cBRSKI) will be introduced.

3.1 Enrollment

IoT devices, designed for specialized tasks, are often shipped and installed in large quan-
tities across diverse environments. They commonly lack user interfaces, which introduces
challenges in configuring them for initial setup and integration into existing networks.
While bootstrapping strategies in the past may have relied on manual processes or the
manufacturer-provided installation of default credentials, these approaches are no longer
viable in today’s threat landscape. Consequently, they necessitate innovative approaches
to secure identity bootstrapping, a critical process for their integration into larger sys-
tems. Bootstrapping involves a sequence of steps, beginning with the verification of a
device’s identity, followed by the issuance of cryptographic key material, and the distri-
bution of essential configuration data [74]. This process not only ensures the device’s
secure enrollment but also plays a pivotal role in maintaining the integrity and scalability
of enterprise systems. Without effective bootstrapping schemes, enterprises face chal-
lenges in integrating IoT devices while preserving robustness and adaptability in their
infrastructure.

In an enterprise setting, securing the bootstrapping process is of utmost importance, as
any compromise could expose sensitive systems and data to threats. Device tracking often
complements the process, leveraging a registration service hosted within the customer’s
domain to monitor and manage enrolled devices. To streamline this, vendors typically
embed identification information in devices during the manufacturing stage. This could
include an attestation key stored within a secure enclave, ensuring that each device has
a unique and immutable identifier. By avoiding shared keys, the risk of unauthorized
access due to key compromise is mitigated. Once devices are delivered, customers can
extract this identification information and cross-reference it with a vendor-maintained
database of legitimate devices. Such verification ensures that only authenticated devices
are integrated into enterprise systems.

9

3 Background

Vendors may provide this identification information in multiple ways. It could accompany
physical device shipment in physical form, or be made accessible through an externally
hosted service designed for automated verification [26]. The latter method enables real-
time validation, allowing vendors to vouch for the authenticity of their devices during
the bootstrapping phase. This approach ensures that devices customers incorporate into
their networks meet the required security standards and originate from trusted sources.
Additionally, this system facilitates easier lifecycle management by maintaining visibility
into the devices’ origin and ongoing operational status.

To enhance trust, many bootstrapping schemes employ X.509 end-entity certificates as
attestation mechanisms [26] [52] [68]. These certificates provide a standardized way
to establish a trust relationship between the device and the customer’s infrastructure.
Vendors can include the issuing CA certificate, allowing customers to verify the certificate
chain and ensure its authenticity. Depending on the enterprise architecture, customers
can further provision devices with domain-specific certificates and key materials, granting
them access to secured services. Once bootstrapping is successfully completed, this
cryptographic information can be used to establish secure connections, enabling encrypted
communication and ensuring the confidentiality, integrity, and authenticity of transmitted
data.

Beyond enrollment, effective bootstrapping also lays the groundwork for ongoing device
management. It can offer additional features such as firmware updates, access control, and
secure decommissioning when devices reach the end of their lifecycle. By embedding trust
at the core of the process, enterprises can future-proof their IoT integrations, ensuring
scalability and resilience in dynamic and evolving digital environments.

3.2 Bluetooth Low Energy

BLE (Bluetooth Low Energy) is a wireless communication protocol specifically designed
for efficient, short-range data transmission [30]. It emphasizes low power consumption,
which makes it ideal for battery-operated devices and applications requiring long opera-
tional lifespans. Unlike traditional Bluetooth, BLE is optimized for quick and lightweight
data exchanges, enabling seamless communication without requiring device pairing. This
characteristic makes it especially well-suited for applications such as real-time control
systems, wearable technology, IoT devices, and smart infrastructure. BLE’s ability to pro-
vide reliable, low-latency communication in these contexts contributes to its widespread
adoption across industries, including healthcare, fitness, home automation, and indus-
trial automation. One of BLE’s key strengths lies in its cost-effective scalability and
flexibility. Devices leveraging BLE can form complex mesh networks, enabling robust
communication across multiple nodes. These networks are particularly useful in smart
city implementations, where thousands of sensors and devices need to interact efficiently.
BLE also supports broadcasting, allowing a device to send data to multiple receivers
simultaneously, which is valuable for beacon-based applications like location tracking,
marketing, or proximity alerts.

10

3.3 The Rust Programming Language

BLE organizes data using Generic Attribute Profile (GATT) [30, G], which structures
information into a hierarchy of attributes. Attributes serve as fundamental data units, each
identified by a universally unique identifier (UUID). Within GATT, two primary elements
are services and characteristics [30, G-2.6.2]. A GATT service groups related characteristics,
where each service provides a logical grouping of data points, simplifying the organization
and interpretation of transmitted information. GATT characteristics, on the other hand,
represent individual data points within a service [30, G-2.6.4]. They include specific values
or attributes, such as the current heart rate or a temperature reading. Characteristics often
include additional metadata, such as permissions (read, write, or notify) and operations
that define how they can be accessed or modified [30, G-3.3.1.1]. These attributes enable
precise control over device interactions, ensuring secure and reliable data exchange.
Notifications allow a device to be informed of changes in real-time without repeatedly
querying for updates, thus improving efficiency and reducing latency. Indications offer a
similar function but include an acknowledgment mechanism, ensuring that the data was
received successfully. These operations are essential in dynamic, real-time applications
where responsive communication is critical. Moreover, BLE incorporates robust security
mechanisms, such as encryption and authentication, to protect data integrity and privacy.
Its ability to dynamically scale from point-to-point communication to large mesh networks,
combined with its energy efficiency and flexible architecture, makes BLE a cornerstone
technology for modern IoT ecosystems. It continues to evolve with advancements like
Bluetooth 5.0 and beyond, introducing features like extended range, higher throughput,
and improved coexistence with other wireless technologies. These improvements further
expand its potential in diverse applications, from smart homes to industrial enterprise
systems.

3.3 The Rust Programming Language

Rust is a modern systems-programming language that has gained significant attention
due to its focus on safety, performance, and concurrency [25]. First released in 2013 under
the sponsorship of Mozilla, Rust was designed to address common challenges in low-level
programming, such as memory safety and data race conditions, without compromising on
efficiency. The language has since evolved into a popular choice for developers seeking
robust solutions for a variety of applications, ranging from embedded systems to web
services [69]. Rust emerged during a period when traditional systems programming
languages, such as C and C++, faced criticism due to their difficulty in managing memory
safety and concurrency [36]. While these languages provide developers with fine-grained
control over system resources, they are also prone to common, memory-related bugs like
buffer overflows and race conditions [54]. Recognizing these challenges, the Rust project
set out to create a language that combined the performance characteristics of C with a
strong emphasis on safety. The aforementioned principles are achieved through several
unique features:

11

3 Background

First, Rust introduces an ownership model that ensures memory safety without requiring
a garbage collector. Every value in Rust has a single owner, and strict borrowing rules
enforce compile-time guarantees against data races and use-after-free errors. In short,
there can either be a single mutable reference or multiple immutable references to a
value at any given time, but never both. Variables are automatically freed at the end of
their lifetime, which happens either when a reference goes out of scope or, in the case of
multiple readable references, when the last reference is dropped. Once code passes the
compiler’s strict checks, developers can be confident that their programs are free from
memory-related bugs. In essence, this approach eliminates the need for manual memory
management, making Rust code less error-prone and more secure.

Second, Rust aims to provide abstractions that incur no runtime overhead, thereby al-
lowing developers to write high-level code without sacrificing performance. Therefore,
Rust is particularly suitable for systems programming and performance-critical appli-
cations. The language’s zero-cost abstractions are achieved through a combination of
static dispatch, inlining, and other compiler optimizations. Rust’s expressive type system
enables developers to write code that is both safe and efficient, without compromising
on readability or maintainability. At the cost of some additional complexity, Rust’s type
system allows developers to express complex relationships between data structures and
enforce critical invariants at compile-time.

Third, by enforcing strict compile-time checks on data access, Rust prevents data races in
concurrent programs. This ensures that multithreaded applications can leverage modern
hardware capabilities safely and efficiently. References and data cannot be shared across
thread boundaries by default, and the compiler enforces this rule during compilation.
Instead, Rust provides explicit, thread-safe access through a combination of its ownership
model and explicit markers for shareable data structures. These interfaces are required
to be transitively used, meaning that any structure or type that marks itself thread-safe
must ensure that all of its fields are also thread-safe. Additionally, Rust’s standard library
provides powerful, thread-safe abstractions for most use-cases, which allow developers to
write concurrent code that is both safe and efficient.

Rust represents a significant advancement in programming language design, combining
the performance and control of traditional systems languages with modern safety guar-
antees. Its innovative features, thriving community, and expanding ecosystem make it
an important language in contemporary software development. Even though Rust is still
a relatively young language, its adoption continues to grow [69], driven by its unique
combination of safety, performance, and concurrency features. It is a powerful tool for
developers seeking to build reliable, efficient, and secure software systems, and it’s an
increasing choice of large players in the industry, such as Amazon, Microsoft, and Google.

12

3.4 BRSKI-PRM

3.4 BRSKI-PRM

Bootstrapping Remote Secure Key Infrastructure with Pledge in Responder Mode (BRSKI-
PRM) (BRSKI with Pledge in Responder Mode) is a BRSKI extension and a work in progress
standard that offers bootstrapping of pledges without the requirement of a pre-enrollment
network connection to the Domain-Registrar [26]. To provide enrollment functionality
within initially networkless environments, BRSKI-PRM introduces a third-party service
called the Registrar-Agent as a mediator between the Pledge and the customer Domain-
Registrar. The Registrar-Agent is a network component that is responsible for establishing
a secure connection with both the Pledge and the Domain-Registrar.

MASA Domain Registrar +
Modified EST

Registrar-AgentPledge

1

2

3

4

5

7

PKI / CA

6

Figure 3.1: The architecture behind BRSKI-PRM [26].

BRSKI-PRM differs slightly from the original BRSKI standard. It offers multiple modes,
this work, however, will primarily focus environments where the Registrar-Agent is co-
located with the Registrar, where both entities communicate directly without the use of
a proxy. Its architecture is depicted in Figure 3.1, which will now be explained in more
detail. First, the Pledge is powered up and is now able to be located by the Registrar-Agent.
Pledge’s offer their serial number and other metadata to the Registrar-Agent, which is
then used to locate the correct Pledge. Upon having found the Pledge, the Registrar-Agent
will then initiate the enrollment process, either by manual action or by an unspecified
automated process.

In BRSKI, the Pledge is the initiator of the enrollment process, where it sends a Voucher-
Request [51, p. 3] [26, p. 7.1.2] to the Domain-Registrar. Instead, in BRSKI-PRM, the
Registrar-Agent triggers the Pledge to create both a Voucher-Request, and an additional
Enrollment-Request (1) [26, p. 7.2.2]. To create these artifacts, the Registrar-Agent informs

13

3 Background

the Pledge of metadata by way of trigger objects. They are called Voucher-Request-Trigger
[26, p. 7.1.1] and Enrollment-Request-Trigger [26, p. 7.2.1] respectively.

The first includes the Domain-Registrar’s identifying X.509 End-Entity certificate, which
is supplied to the Registrar-Agent by way of configuration. This certificate proves that the
Registrar-Agent is authorized to act on behalf of the Domain-Registrar. However, at this
point in time, the Pledge cannot verify the Registrar-Agent’s identity. Later in the process,
it will receive the domain’s trust chain, which includes the CA certificate that signed
both the Registrar’s EE certificate and the Registrar-Agent’s EE certificate. The Voucher-
Request-Trigger also includes a signed object carrying either a nonce or a creation-date
as well as the identified pledge’s serial number. This signed object is embedded into the
Voucher-Request created by the pledge and serves as a protection against replay attacks.
The Pledge will now also create an Enrollment-Request artifact, which is a signed payload
that includes a Certificate Signing Request (CSR).

Like in BRSKI, the Voucher-Request is sent to the Domain-Registrar by way of the Registrar-
Agent proxy via a TLS connection between the Registrar and the Registrar-Agent (2). This
TLS connection handshake is secured by the Registrar-Agent’s End-Entity certificate,
which must originate from the same trust anchor as the Registrar’s certificate. This step
is crucial, as both the Registrar-Agent and the Registrar must be able to verify each
other’s identities. Additionally, the Registrar wraps the Voucher-Request in a Registrar
Voucher Request (RVR), a signed artifact that includes additional metadata. Here, BRSKI-
PRM introduces the notion of a Pinned-Domain-Cert, which is a certificate chosen by the
Registrar to be included in the RVR and which will also be included in the final Voucher
artifact. This Pinned-Domain-Cert is a trust anchor certificate, and is at its simplest
form, the Domain-Registrar’s PKI CA certificate, which was used to sign the Registrar’s
EE certificate. As in BRSKI, the Pledge’s Voucher-Request object contains the Pledge’s
certificate, where an API URL is included, which points to its vendor’s services. The
Registrar sends the RVR to the now located MASA, which then creates a Voucher artifact
(3). The manufacturer signs this Voucher and responds (4), which the Registrar will both
log and inspect for possible tampering. Before sending a copy to the Registrar-Agent (5),
who will hold onto it until a later stage, the Domain-Registrar re-signs the Voucher object
in-flight with the same EE certificate that was originally provided to the Registrar-Agent
by way of configuration, and which is included in the trigger Voucher-Request artifact
(see (1)).

In BRSKI, the protocol flow ends with the Pledge receiving the issued voucher. Control
would be handed to EST for the process of enrolling a domain CA issued certificate onto
the Pledge. Instead, BRSKI-PRM includes functionality of EST where needed and extends
it with additional processes. The Enrollment-Request, containing the CSR sent by the
Pledge to the Registrar-Agent at an earlier step, is now sent to the Domain-Registrar (6).
Using all data available to the Registrar at this time, it can now verify the Pledge’s identity.
It then queries its domain Certificate Authority (CA) for a Pledge identity EE certificate,
which it will then send back to the Registrar-Agent. This pledge certificate is signed by the
Domain-Registrar’s CA, and is used to authenticate the Pledge for the network connection

14

3.4 BRSKI-PRM

in the customer domain’s enterprise network. In parallel to this process, the Registrar-
Agent also send a request to the Domain-Registrar for a CA certificate bundle, which is
essentially the trust chain needed to verify both the Registrar-Agent’s EE certificate and
the Registrar’s EE certificate.

First, after having acquired Voucher artifact, the issued domain device certificate and the
CA certificate bundle, the Registrar-Agent can now send this data back to the Pledge (7).
The Pledge can confirm the Voucher by first verifying the MASA’s signature on the Voucher
object by using factory provided trust anchors. As mentioned previously, the Voucher
object contains the pinned domain trust anchor. Using this, the Pledge can validate the
Registrar-Agent’s EE certificate, as well as the Registrar’s added in-flight signature of the
Voucher object.

Second, the Registrar-Agent sends the CA certificate bundle domain trust chain to the
Pledge. Unlike the pinned-domain cert, the CA certificate bundle must also be the root of
trust for the device certificate intended for the Pledge at the final step. This CA-certificate
bundle is also transferred in the form of a payload signed by the Registrar with its own
EE certificate. The Pledge can now validate the signature on this bundle, as in the step
before, by using the pinned domain trust anchor from the Voucher object. Once verified,
the Pledge installs these CA certificates into its trust store.

Finally, the Registrar-Agent sends the issued device domain certificate to the Pledge. By
using the CA domain certificate bundle acquired in the previous step, the Pledge can
now verify its own domain certificate. Once verified, the Pledge can install the domain
certificate into its trust store, which it can finally use to establish a mutually authenticated
TLS connection with whatever service it needs to connect to.

As can be seen from the above description, BRSKI-PRM is a more complex protocol
than BRSKI. It also potentially turns the procedure into a one-touch process in which
manual interaction is required, compared to the zero-touch process defined in BRSKI.
Furthermore, BRSKI-PRM introduces a new security model, by making an encryption
connection between the Pledge and the Registrar-Agent optional. Instead, (most) payloads
are signed by all parties involved before being exchanged, thereby ensuring object security
and foregoing transport security. While a TLS or mTLS connection is still recommended,
this enables BRSKI-PRM can thus be used in heavily restricted environments where a TLS
connection is not possible. Because the Pledge acts as a server in BRSKI-PRM, additional
functionality is added where a client can request status and security information from
the device before, during and after enrollment. For example, the Registrar-Agent can
query the Pledge on whether the Voucher has been successfully installed. The Pledge
can then respond with different response codes depending on its state. This allows more
granular logging and responses to different error state, making BRSKI-PRM potentially
more reliable than its predecessor. One more advantage of BRSKI-PRM is that since the
Registrar-Agent acts as a full proxy between the Registrar and the Pledge, the Registrar
can now operate agnostic of the Pledge’s communication protocol.

15

3 Background

3.5 cBRSKI

cBRSKI (Constrained Bootstrapping Remote Secure Key Infrastructure) is a BRSKI ex-
tension which aims to provide a secure bootstrapping process for constrained devices
[55]. cBRSKI grew out of the need for an enrollment protocol with a focus on embedded
devices with limited power throughput, computational capabilities, and flash storage. As
in BRSKI, a Voucher artifact is exchanged between a device and a domain owner’s au-
thoritative service to facilitate mutual authentication. cBRSKI does not use the Hypertext
Transfer Protocol (HTTP) transport protocol defined in BRSKI and BRSKI-PRM. Instead,
it makes use of Constrained Application Protocol (CoAP), thereby also exchanging the
HTTP-based EST protocol for EST-coaps [5]. CoAP is a lightweight protocol designed for
constrained devices and networks [61], which works similar to HTTP.

Due to its focus on low-powered embedded devices, cBRSKI does not rely on JavaScript
Object Notation (JSON) as its serialization format. Instead, it employs the use of Concise
Binary Object Representation (CBOR) [3], a binary data format with the goal of providing
an interface that results in minimal code and message size. CBOR is similar to JSON, with
the added benefit that map values can be binary-encoded without needing to be Base64
encoded. In CBOR, map keys are encoded by providing a key map to the sender and
receiver. Each key is assigned a minimal identifier, which can be encoded by the client and
reproduced by the receiving party. The values are encoded as binary using an encoding
scheme specified in the CBOR standard. cBRSKI uses this format for all exchanged data
specified in the BRSKI protocol, as well as for the Voucher artifact. To support signing
this Voucher object, as well as other BRSKI artifacts, cBRSKI employs a signing standard
which supports its goals of minimal data exchange sizes. For this, its authors use CBOR
Object Signing and Encryption (COSE) [60] [59], a signed message format similar to the
JSON signing scheme JavaScript Object Signing and Encryption (JOSE). The data are first
encoded according to the specifications and then packed into a COSE message. This
message features protected and unprotected headers, where additional relevant metadata
can be saved. Signatures protect the integrity of the included payload and the protected
header parameter. The payload field includes the data to be exchanged between the server
and client.

To reduce the transfer size, cBRSKI employs a constrained version of the Voucher [73].
For example, instead of including the Registrar’s certificate to prove the proximity of
the Registrar-Agent to the Pledge, a constrained Voucher only includes its public key. At
a later point in time, when communication in BRSKI calls for exchange of information,
which would include entire trust chains that has been sent previously, only the hash of
each trust chain certificate public key is sent to minimize packet size. cBRSKI also uses
X.509 certificates, as defined in BRSKI, encoded in a special format that fits the COSE
specification [44].

16

4 Requirements

The aim of this chapter is to identify the requirements that are imposed by searching for
a maximally secure enrollment scheme for low-powered IoT devices. First, a scenario
in which the proposed scheme is applied is introduced. From this, additional desired
properties of the proposed scheme are derived, as well as definite requirements that the
scheme must fulfill. They are the focus of the first research question, RQ1.

The scenario considered is an enterprise environment in which numerous low-powered IoT
devices are deployed. These devices are installed at various locations, ranging from office
buildings to industrial plants. The devices are intended to be connected to an enterprise
network through which they can communicate with other devices and services. In addition,
the enterprise environment in the proposed scenario may exist in a public domain. Thus,
devices may be physically exposed to potential attackers who may attempt to compromise
the devices or the network. These devices may be mission critical, meaning that they
exist in a high security environment, where data loss or device compromise could have
severe consequences. Due to the limited scope of this study, only the enrollment process
as the potential entry point for attackers, was considered. Therefore, this study focused
on securing the initial device enrollment process. This study examines the enrollment
process for constrained devices under the umbrella term of IoT devices. They exist in
constrained environments, are low-power, and have limited computational resources. In
this scenario, it is also a security requirement that no initial network access is granted
before the enrollment process succeeds. Finally, the enrollment process should be as
user-friendly as possible, requiring minimal manual intervention by service personnel.
Service personnel should only require minimal, nontechnical training and as little as
possible security clearance to enroll devices.

In this scenario, several desired properties of an ideal enrollment scheme are derived.
First, in the context of academic research, only open, accessible research and software
should be considered. To this end, this study will focus on openly accessible, third-party
solutions as the basis of this work, and we cannot rely on proprietary solutions for fully
transparent research. Second, to build on security-proven foundations, the proposed
scheme should be based on established industry standards. Third, the proposed scheme
should be easily extensible for further research and development. This will allow future
work to build upon our results, in turn giving us the opportunity to give back to the
security research community within the IoT domain.

With these properties and the above scenario in mind, the following requirements are
identified for the enrollment scheme: First, because the focus is specifically on enrolling
constrained devices in enterprise environments, and the compatibility with the opera-
tional limitations of low-powered constrained devices must be ensured. With only a
few kilobytes of Random Access Memory (RAM) and Read-Only Memory (ROM), these
devices have limited computational power and memory. Therefore, the bootstrapping

17

4 Requirements

scheme must allow the use of lightweight and computationally efficient cryptographic
algorithms. Additionally, data exchanged during the bootstrapping process should be
kept to a minimum to reduce the computational load on the device. The scheme must be
scalable to accommodate varying numbers of devices without compromising performance.
Second, since IoT devices may be used in large numbers in enterprise environments, the
proposed scheme must be able to accommodate varying large-scale device deployments.
There should be little to no compromise on performance while also avoiding network con-
gestion side effects when large batches of devices are enrolled simultaneously. Effortless
capability should enable the proposed scheme to be employed in all types of enterprise
environments, regardless of the number of devices enrolled. Employing passive devices
that wait for an initial impulse to start the bootstrapping process reduces network load
and is therefore a desirable feature.

Third, since the stated scenario requires the ability to employ service personnel with
minimal training, the scheme should require minimal outside intervention. Complexity
should be mostly hidden from the user, who only needs to verify the accuracy of the
installation location. Essentially, the only interaction required is to initiate the enrollment
process by use of an enrollment tool, either in physical form or as a domain-integrated
software application. This approach simplifies the user experience for untrained service
personnel and enhances efficiency. By limiting the necessary interactions, the proposed
scheme can be made more user-friendly and less error-prone. The proposed approach also
has the advantage of reducing attack surfaces and potential entry points for threat actors.

Fourth, in order to prevent network access to unauthorized devices in potential mission-
critical environments, it is required that devices are entirely offline before finishing
enrollment. When entirely isolating devices before and during the enrollment, one can
guarantee even better security than relying on managed network solutions to prevent
unauthenticated devices from accessing the network. If misconfigurations are present,
for example, in a domain network’s firewall, a disconnected-by-default device will not
be able to connect to the network until it has been vetted. This is particularly important
in environments where sensitive data is stored or processed. Therefore, focus should be
placed on an enrollment scheme in which initial network connections are not a definite
requirement and which offer alternatives to network-based enrollment.

Fifth, to build upon openly accessible solutions, the requirement is imposed that the
scheme should be based on open-source solutions and software. It should not rely on a
specific proprietary hardware or software solution. Better security through transparency
and community engagement is hoped to be gained by utilizing open-source solutions.
Open-source solutions are also more likely to be supported by a larger community, which
can help with troubleshooting and development. This also allows for more innovation
and flexibility in the development process. The use of open-source solutions also makes
it easier to integrate the proposed scheme with existing infrastructure. Furthermore, by
developing a rather complex system in the open, it is hoped that future research will build
upon and improve the security of the work. Reliance on established enterprise standards
provides us with the opportunity to work closely with protocol authors and industry

18

experts. This enables us to build upon a security-proven foundation and to benefit from
the experiences of others. In turn, we hope to contribute to and further improve existing
standards.

Sixth, since IoT devices in enterprise environments may access mission critical infrastruc-
tures or sensitive data, the scheme must include robust security measures. As part of the
enrollment process, the selected scheme should include a method to securely distribute
configuration parameters and network-specific key materials to the device. Some vendors
may offer to fit devices with a single pre-shared network access key identical for all devices.
This is a security risk because a single key can be extracted from a single device and used
to access the customer’s target network. Instead, the proposed scheme should incorporate
installation attestation keys unique to each device during the manufacturing process. In
this way, the device can be identified by the customer, and the network administrator
can be sure that the device is genuine. The vendor’s contribution to the identity-proofing
process is of utmost importance. Therefore, the requirement is described that vendors
provide openly accessible interfaces that customers can access to verify the identity of a
device’s key.

Chapter 3 and Chapter 2 discuss several secure enrollment schemes. We investigated
ACME (see Section 2.3) as a candidate, but ultimately deemed it unsuitable for the scenario
due to the need for a pre-enrollment network connection. The entire exchange between
a proxy component connected to the network and the networkless device that is to be
enrolled would also need to be engineered. EST (see Section 2.4) is also not suitable
for the stated scenario because, like ACME, it requires devices to have already joined a
network before enrollment can begin. Furthermore, EST requires either manual action or
an unspecified automated process to confirm device identity before enrollment. We then
looked into BRSKI (see Section 2.5), which is a foundational protocol for secure device
bootstrapping. While BRSKI provides a bootstrapping process for devices once they are
connected to the customer’s network, it has multiple disadvantages when considering the
previously determined requirements. First of, like EST, BRSKI is not intended for use in
unstable networks or with devices that lack a network connection. When connected to
the local domain, pledges in the BRSKI standard immediately start to relentlessly query
administrative endpoints to request enrollment. This may affect scaleability because
large amounts of yet to be enrolled pledges may cause congestion effects in a constrained
network. BRSKI-PRM (see Section 3.4) is the most promising so far. At the cost of turning
the enrollment process into a one-touch process, BRSKI-PRM offers an enrollment process
for initially passive devices. It also theoretically allows for enrolling devices without a
pre-existing network connection, but this behavior is entirely unspecified and therefore up
to the implementor. However, like its predecessors, BRSKI-PRM is defined with a Internet
Protocol (IP)-based transport protocol and is not sufficient for this work’s needs of a low-
powered, Bluetooth-focused process of exchanging data. Its transport protocol relies on
JSON, which is suitable for a web server context and allows for human-readable payloads,
but is not suitable for low-powered devices. There are several additional properties of
BRSKI-PRM that are not ideal for devices with low-powered hardware. This is why cBRSKI
(see Section 3.5), an extension of BRSKI aimed at providing a secure bootstrapping process

19

4 Requirements

for constrained devices, was looked into. While cBRSKI meets many of the imposed
requirements concerning the use of low-powered hardware, it is similar to BRSKI in that
it uses IP-based transport protocols, and it defines pledges as active clients, that spam
administrative endpoints with Enrollment-Requests as soon as they are connected to the
local domain. Within the context of the existing work that we have examined, we have
not found a scheme that meets all stated requirements.

Thus, to answer RQ2, this study proposes a hybrid approach. It specifically focuses on the
BRSKI-PRM and cBRSKI schemes, because a unison of both fulfill a large part of the stated
requirements. Since the original BRSKI specification was designed with extensibility
in mind, and since both BRSKI-PRM and cBRSKI are largely congruent, the resulting
enrollment scheme should still be compatible with the BRSKI specification. Here, the basic
functionality of BRSKI-PRM is maintained and extended it with features from cBRSKI
where applicable. Therefore, this study utilizes the entities and interactions defined in the
BRSKI-PRM specification. Our resulting scheme will exist within this document under
the name Constrained Bootstrapping Remote Secure Key Infrastructure with Pledge in
Responder Mode (cBRSKI-PRM).

20

5 Architecture

As described in Chapter 4, BRSKI-PRM and cBRSKI were selected as suitable bases upon
which the intended enrollment scheme was constructed. The following sections present
the architecture of the implemented system. First, the physical components required for
the implemented system are described. Next, the needed software components are then
discussed. Finally, the exact changes to the BRSKI-PRM protocol are presented, some of
which are drawn from the cBRSKI specification.

Several components are necessary for the implementation of the hybrid enrollment pro-
tocol. Because the hybrid scheme will be built on BRSKI-PRM, it makes use of the same
components. The general architecture behind BRSKI-PRM is as depicted in Figure 5.1.
The following section describes the these required components of the proposed system
and details their specific requirements. It also showcases at a high level how the different
components interact with each other.

Vendor Services

Manufacturer
Authorized
Signing
Authority

Ownership
Tracker

Domain
Registrar

Key Infrastructure
(e.g., PKI CA)

Pledge

Drop Ship

Registrar-Agent

Customer Domain

BRSKI-
MASA

Figure 5.1: BRSKI-PRM’s architecture

5.1 Pledge

As mentioned in Section 2.5, Pledges are devices that must be enrolled into a specific
network. They are acquired in varying quantities from a vendor and manufactured at
their facilities. In BRSKI based protocols, Pledges have a link-local network connection
to a customer-operated service that allows communication with a registration authority
during the enrollment process. In this study’s scenario and according to the derived

21

5 Architecture

requirements, this capability is removed, with an alternative communication protocol that
does not rely on any network connection being opted for instead. This however comes
with the requirement that a communication bridge between the Pledge and the entity
tasked with enrolling the Pledge into the network be constructed. Ultimately, a Pledge
must have the capability to store trust anchors and certificates, as defined in BRSKI-based
specification documents. This information is used to establish a secure Transport Layer
Security (TLS) connection to the domain network.

5.2 Registrar-Agent

The aforementioned communication bridge between the Pledge and the Domain-Registrar
is BRSKI-PRM’s Registrar-Agent. In this study’s scenario, the Registrar-Agent exists
as a tool on a physical device that is used by an operator to initiate the enrollment
process manually. Specifically, an Android phone was selected. This phone acted as
a bootstrapping tool and was to be equipped with the Registrar-Agent software. It is
tasked with discovering the Pledge devices and providing a communication channel
between the Pledge and the Domain-Registrar. Upon requesting the discovery process,
the phone will scan for available nearby pledges and show them to the operator. After
confirming the correct installation location with additional information, operators can
make an informed decision on whether to initiate the enrollment process for a discovered
Pledge. The complexity of the enrollment process will be hidden from the operator, who
will receive either a success or failure message upon completion or cancelation of the
enrollment process. The Registrar-Agent exists in what BRSKI-PRM calls a co-located [26]
environment and therefore exists within the same network as the Domain-Registrar. The
debugging information is sent to a central logging facility in the domain network.

5.3 Domain-Registrar

The customer Domain-Registrar is the device customer’s central authority in the enroll-
ment process. It is responsible for authenticating the Pledge and providing its trust
root to the enrollment candidates. For the first step, the Domain-Registrar establishes
a communication bridge between the Registrar-Agent and the device manufacturer. At
some point in the protocol, the Pledge must create a certificate signing request, which will
be sent to the Domain-Registrar by way of the Registrar-Agent. BRSKI-based protocols
make no assumption of how the CSR attributes needed for creation of the CSR will be
distributed to the Pledge. Thus, in the proposed protocol extension, a step is added where
the Registrar-Agent requests domain-specific CSR attributes from the Domain-Registrar.
This query will happen after a connection to the Pledge has been established and before the
Registrar-Agent sends an Enrollment-Request-Trigger artifact (see Section 3.4). These at-
tributes will be included in the artifacts listed above and sent to the Pledge. The Pledge can
now include these attributes in the CSR it creates and sends to the Domain-Registrar. The
Domain-Registrar will verify the CSR’s signature and requests the issuance of a certificate

22

5.4 MASA

from the domain CA. In BRSKI and BRSKI-PRM, the Registrar has the task of verifying
the issued Voucher artifact and provides additional, unspecified verification steps. In
this scenario, the Domain-Registrar will be tasked with logging all available information,
which is then sent to a central logging collection entity in the domain network.

5.4 MASA

As per BRSKI (see Section 2.5), the MASA is a service that provides two tasks in the
enrollment process. First, it provides a public interface for the Domain-Registrar to
communicate with the device manufacturer. Using this interface, the MASA can receive
information from the customer’s Domain-Registrar, including the data required for the
enrollment process. This data specifies the device’s identity certificate, a certificate of the
customer’s choosing for the trust chain pinning process, and further information like a
creation date to identity when requests for a Voucher are first created. Second, the MASA
provides internal logging services for ownership tracking and identification purposes to
match pledges to their respective customers. Since the MASA is essentially simulated
in this study’s scenario, a service was developed, that provides the minimum required
functionality for the BRSKI-PRM Voucher issue process. While real vendors may have
more complex verification systems in place, a Voucher is issued if the provided Pledge
identifier certificate is valid and has been created by the MASA CA certificate.

5.5 Proposed Protocol Extension

As described in Chapter 4, a fusion of BRSKI-PRM and cBRSKI fulfills the requirements
of the proposed solution. Therefore, and to answer RQ2, the exact modifications required
for BRSKI-PRM to work on hardware-constrained devices are described in the following
section. The concrete implementation of these modifications is discussed in Chapter 6.

First, both BRSKI-PRM and cBRSKI utilize IP-based communication using HTTP(S) and
CoAP, respectively. Due to the requirement of having no initial network connection,
BRSKI-PRM cannot rely on an IP-based communication bridge to between the Pledge
and the Registrar-Agent. Therefore, the proposed solution replaces the IP stack used in
BRSKI-PRM with a different transport layer protocol. BLE is a suitable candidate for
this task, as it is a low-power, short-range communication protocol that is supported
by a variety of integrated devices. BLE also has the advantage of being supported by
most modern smartphones, the latter of which can be used for the development of an
enrollment tool, the Registrar-Agent.

HTTP and CoAP are both request-response protocols that allow clients to communicate
with servers. Application-layer protocols for BLE are not request-response-based, but
instead rely on the Generic Attribute Profile (GATT) to communicate (see Section 3.2).
The first two protocols define the communication of intent from client to server using
routes and HTTP methods. BLE, on the other hand, is a simple point-to-point protocol that

23

5 Architecture

does not have these features. Since BLE instead operates using services and attributes to
communicate, the BRSKI-PRM protocol has been adapted to use these concepts instead,
which is detailed in Subsection 6.2.2.

Devices with constrained computational resources benefit from serialization formats and
transfer sizes designed to minimize memory usage.

BRSKI and BRSKI-PRM rely on JSON for message encoding, which is a text-based format
that is not well-suited for constrained devices. In addition, the size of BRSKI data packets
is further increased due to the inclusion of multiple, sometimes large, certificate chains,
which serve as proof of identity, as well as carrier information for the device’s public
key, which is used to sign transmitted messages. As specified in the BRSKI standard,
binary data like these certificates must be encoded in Base64, a binary-to-text scheme that
converts three bytes of binary data into four bytes of ASCII text, adding an overhead which
can prove significant for devices with limited stack space. To address these limitations, a
more suitable serialization format for constrained IoT devices can help reduce the payload
size. Therefore, cBRSKI-PRM uses CBOR for message encoding, which is the binary
counterpart of JSON, and which is also used in cBRSKI. CBOR eliminates the need for
binary data conversion to and from Base64, because it directly transmits the data in its
native format. While BRSKI and BRSKI-PRM rely on JSONWeb Signature (JWS) tokens to
encode signed JSON payloads, cBRSKI uses CBOR Object Signing and Encryption (COSE),
a protocol designed to transport signed CBOR payloads. Implementation details of this
technique are described in Subsection 6.2.1.

BRSKI-PRM signs data to secure its integrity. When a Voucher is issued by a vendor in
BRSKI-PRM, this signed Voucher artifact is sent to the Domain-Registrar, which then signs
the artifact again before sending the now twice-signed Voucher to the Registrar-Agent.
At the time of writing, no library in the Rust ecosystem supports the behavior of signing
an already signed token in-flight. After consultation with BRSKI-PRM’s authors, we
suggested a wrapping solution instead, where the Voucher artifact would be wrapped
into a Registrar-Wrapped-Voucher, creating a signed outer shell around the masa-signed
voucher. However, after consulting with the authors of BRSKI-PRM, they declined this
approach. Therefore, this study includes a forked version of a pre-existing library for
added support for this behavior. The implementation details of this process are explained
in Subsection 6.2.1.

Even when using a more efficient serialization format, the size of the data packets ex-
changed during the enrollment process can still be too large to be processed natively by
the BLE protocol. Therefore, this study includes a bespoke BLE packet fragmentation and
reassembly algorithm, as well as a routing mechanism that allows for the transmission of
large data packets over BLE. This work is detailed in Subsection 6.2.2. HTTP and COAP
usually rely on the Content-Type header to negotiate the format of the message and on
ACCEPT headers to negotiate the format of the response. Both are defined for every step in
the BRSKI-PRM protocol. Bluetooth Low Energy does not have such a content negotiation
mechanism. Therefore, cBRSKI-PRM includes two public facing endpoints that replicate
content-type negotiation. Pledges advertise their capabilities concerning supported sig-

24

5.5 Proposed Protocol Extension

nature algorithms, and serialization formats to the Registrar-Agent an additional, newly
defined first step of the protocol, before the enrollment process is initiated. The exact
workings of this mechanism are explained in Subsection 6.4.2.

MASA Domain Registrar +
Modified EST

Registrar-AgentPledge

2

4

5

6

8

PKI / CA

2

4

1

3

37

Figure 5.2: The proposed architecture of cBRSKI-PRM

There are more modifications required to adapt BRSKI-PRM for use with constrained
devices. They are not limited to software changes, but also include changes to the protocol
itself. For the cBRSKI-PRM protocol, this study proposes the following modification to
BRSKI-PRM as seen in Figure 5.2. Lines in red and green indicate functionality that works
as specified in BRSKI-PRM (see Section 3.4). Purple lines indicate new functionality
added to the protocol. First, to accommodate for the aforementioned advertisement for
Pledge capability to the Registrar-Agent, we have introduced a new initial step (1). This
step is necessary to ensure that the Registrar-Agent is aware of the Pledge’s capabilities
before the enrollment process is initiated. Next, we modify the BRSKI-PRM defined steps
for the exchange of the Voucher-Request trigger artifact and the enrollment trigger artifact.
Now, and as described in Section 5.3, the Registrar-Agent is responsible for acquiring
the domain defined certificate attributes needed for the Pledge’s CSR. This is a bespoke
diversion from the BRSKI-PRM standard, which does not define any strategy for when and
how CSR attributes are communicated to the Pledge. Using this strategy, a new, modified
Pledge enrollment artifact is created by the Pledge and sent to the Registrar as usual (3).
Now, with the Pledge capabilities communicated and the CSR attributes sent to the Pledge,
the enrollment scheme proceeds as defined in BRSKI-PRM (4-8).

25

6 Implementation

This chapter answers RQ3. It’s explicit goal is to showcase how the cBRSKI-PRM proposal
was implemented on low-powered hardware. The implementation of the prototype at
first consisted of a simple implementation of BRSKI-PRM, which was then iteratively
enhanced to include features of cBRSKI when applicable. Later, the implementation was
extended to include the Android Registrar Agent, which acts as the Registrar-Agent and is
used as a commissioning tool. Finally, the implementation was extended to include an
ESP32-based prototype. The ESP32 is a common, high-level microcontroller used in IoT
devices, which and was used to demonstrate the feasibility of the cBRSKI-PRM enrollment
scheme in a constrained environment.

6.1 BRSKI-PRM Prototype

The first step in the implementation process was to develop a prototype of the BRSKI-
PRM enrollment scheme. This served as the foundation for the subsequent integration of
cBRSKI features. The prototype was developed using the Rust programming language,
which is well-suited for embedded systems and provides a high level of control over
system resources. Because Rust is a programming language with a focus on memory safety,
it is ideal for the development of secure systems. In the initial prototype, all services are
simulated on a single device, with each service running in its own thread. As per BRSKI-
PRM, Pledge, Registrar-Agent, the Registrar and the MASA are all implemented as web
services. Even though the final work will be implemented using a Pledge and a Registrar-
Agent, which do not communicate via network, implementing both as web servers first
allowed the verification of the correct communication between the components. For easier
testing, the prototype includes a CLI tool that can be used to start the services and interact
with them.

The prototype is openly accessible on GitHub [38]. It can be configured via command line
arguments or a configuration file. An example of the required configuration parameters is
shown in Listing A.1. They include the certificates and keys used by the service, as well as
the URLs of other services that it needs to communicate with. Similar to BRSKI and BRSKI-
PRM, this work includes the testing certificates used (see Appendix C). They include
the CA certificates for the MASA and the Registrar, as well as the end-entity certificates
for each party. For services that must to share a common trust anchor for verification
purposes, a configuration entry is also added. Each of the services is reachable under the
.well-known directory, which is a location for standardized endpoints in web-services.
To identify BRSKI-related functionality, the services are hosted under /.well-known/brski
suffix.

The Manufacturer Authorized Signing Authority (MASA) is a critical component of the
BRSKI-PRM architecture. As mentioned in Section 3.4, the MASA is responsible for

27

6 Implementation

issuing vouchers to the pledges, which include security information about the target
domain. This work chooses the simplest strategy for the MASA’s decision process on
whether to issue a voucher. If it can verify that the Pledge’s certificate in the voucher-
request has been signed by its own CA certificate, it will issue a voucher. Therefore, the
MASA service only has to provide a single endpoint for the Pledge to request a voucher,
as seen in Table 6.1.

Service Name URL Description

Request Voucher /.well-known/brski/requestvoucher
Request a Voucher by
POST-ing a Voucher Re-
quest Artifact

Table 6.1:MASA Service Endpoints

The Domain-Registrar acts as the customer’s central authority in the BRSKI-PRM archi-
tecture. In BRSKI-PRM, the Registrar offers several services to Registrar-Agents, as is
shown in Table 6.2. It combines functionality defined in EST for handling the requests of
vouchers by pledges (1) and also when handling end entity certificate requests (2). After
the Voucher is issued, a Pledge may request the domain trust anchor (3), which it installs
into its own trust store for later verification and establishment of TLS connections. After
the enrollment is complete, pledges must send telemetry data to the Domain-Registrar (4).
This will help domain operators recognize errors and react accordingly.

Service Name URL Description

Request Voucher /.well-known/brski/requestvoucher

Request a Voucher by
POST-ing a Registrar
Voucher Request Arti-
fact (1)

Request Enroll /.well-known/brski/requestenroll

Request a new Pledge
EE certificate by POST-
ing a Pledge Enroll Re-
quest Artifact (2)

Wrapped CA
Certs /.well-known/brski/wrappedcacerts Request the Domain

Trust Chain (3)

Enroll Status /.well-known/brski/enrollstatus
Send Enroll Status
Telemetry to Domain
Administrators (4)

Table 6.2: Registrar Service Endpoints

Our implementation enhances the specification documents with additional verification
steps. For example, BRSKI-based protocols only verify the correct format of a Pledge’s
Voucher-Request by checking if the HTTP content type information matches the payload.
Instead, this implementation parses the payload into the expected data structure, thereby
sacrificing speed for a correctness verification step at the earliest communication endpoint.

28

6.1 BRSKI-PRM Prototype

The Registrar-Agent is added to BRSKI in BRSKI-PRM and adds select functionalities
to aid Pledges when joining a customer network. Essentially, the Registrar-Agent as a
component is tasked with relaying information between the Pledge and the Registrar,
while also adding security information to ensure the integrity of the proxied payloads.
It is important to note that according to the specification document, the transport layer
between Pledge and Registrar-Agent must be able to guarantee security without relying
on TLS as a security protocol. In order to establish connection to the Pledge and to send
the initial impulse to begin enrollment, operators need some way to interact with the
Registrar-Agent. The BRSKI-PRM specification does not detail how this interaction should
be implemented. Therefore, the Registrar-Agent in this implementation adds a route
that allows for the initiation of the enrollment process via manual POST requests. It is
depicted in Table 6.3.

Service Name URL Description

Init /.well-known/brski/init Begin the enrollment
process

Table 6.3: Registrar-Agent Service Endpoints

According to BRSKI-PRM’s specification, Pledges need to support the functionality defined
in Table 6.4. First off, they need to answer initialization requests carrying trigger-metadata
with a Pledge-Voucher-Request artifact (1). Next, Pledge’s will need to answer a trigger
artifact with a Pledge-Enroll-Request, which communicates the intent to enroll into the
network (2). After the Voucher has been issued, it will be sent to the Pledge by the
Registrar-Agent, for which the Pledge offers a route (3). Later, for verification purposes,
the domain’s trust chain will need to be sent to and installed by the Pledge (4). Once the
domain device certificate has been issued, it is sent to the device as well (5). Finally, there
is an endpoint for querying telemetry data from the Pledge (6).

Service Name URL Description

TPVR ./well-known/brski/tpvr Trigger Pledge Voucher
Request

TPER ./well-known/brski/tper Trigger Pledge Enroll
Request

SVR ./well-known/brski/svr Supply Voucher to
Pledge

SCAC ./well-known/brski/scac Supply CA Certificates
to Pledge

SER ./well-known/brski/ser Supply Enroll-
Response to Pledge

QPS ./well-known/bsrki/qps Query Pledge Status

Table 6.4: Simulated Pledge Service Endpoints

29

6 Implementation

6.2 cBRSKI-PRM

This chapter showcases the implementation of extensions needed for the cBRSKI-PRM
protocol as specified in Section 5.5. First, it discusses the modifications to the BRSKI-
PRM prototype needed for easily switching serialization and signature protocols. The
differences, advantages and disadvantages between using JSON/JWS and CBOR/COSE as
serialization and signature formats are shown. They showcase why CBOR/COSE are more
efficient for constrained devices. Finally, the implementation details behind transferring
cBRSKI-PRM related payloads via Bluetooth Low Energy are depicted.

6.2.1 Switching from JSON to CBOR

As mentioned in Section 2.5, BRSKI and most of its extensions employ JSON for the
serialization of data. Depending on the step in the enrollment process, exchanged artifacts
are composed of nested, signed JSON objects, which can grow to a considerable size.
Some signed structures, like the Voucher-Request artifact (shown in Listing A.2), contain
another, different signed objects. At its simplest form, the JSON-based Voucher-Request
artifact is about kilobyte in size. This is due to the fact that JSON is a text-based format.
Its size is further inflated by the inclusion of binary data, like certificates, which are
encoded in the Base64 format due to BRSKI-PRM’s data model [4] [26] [73]. Base64 is a
binary-to-text encoding scheme that converts three bytes of binary data into four bytes
of ASCII text [35], adding an approximate overhead of 33% (not including line-break
sequences) to the original data. The JSON signature format, JOSE, further inflates the
payload size, because its contents and metadata are also Base64 encoded (as depicted
in Listing 6.1). The overhead is significant: When testing, the measured size of a JSON
encoded and JOSE signed Voucher-Request artifact is around 3.3 kilobytes. Depending on
the length of the certificate chains included in BRSKI messages, the payload’s size may
increase significantly. Therefore, it is worth considering alternative serialization formats
for encoding data structures in BRSKI messages.

1 {
2 " payload ": BASE64URL (UTF8(data)),
3 " signatures ": [
4 {
5 " protected ": BASE64URL (UTF8(HEADER)),
6 " signature ": BASE64URL (SIG)
7 }
8]
9 }

Listing 6.1: Example of a JOSE signature

Instead of JSON, cBRSKI chooses CBOR as an alternative serialization format. CBOR is a
binary encoding format for data structures, which is designed to be more compact than
JSON. It saves space by encoding data in a more efficient format, thereby reducing the
overhead of encoded data by omitting long string keys. Since CBOR is a binary format, it
can represent binary data directly without the need for Base64 encoding. Measuring the

30

6.2 cBRSKI-PRM

BRSKI-PRM Flow JSON/JOSE (in Bytes) CBOR/COSE (in Bytes)

tPVR 1545 1205
PVR 3301 2464
tPER 37 33
PER 1750 1184
SVR 4107 2131
SVR Response 1118 607
SCAC 2839 2074
SCAC Response 0 1
SER 507 506
SER Response 1128 615

Table 6.5: BRSKI-PRM Artifact Sizes with JSON/JOSE and CBOR/COSE

size of payloads when encoded in CBOR shows a possible decrease of approximately 20-
30% of the payload size compared to JSON.While this decrease may not seem significant at
first, the difference between a couple of hundred kilobytes is substantial when stack space
is extremely limited. In BRSKI, Pledge’s may need to hold references to a Voucher object,
the target domain’s trust chain, the Pledge’s own manufacturer-provided certificate and
private key and finally the certificate Domain-Registrar’s may issue, before verification of
key material can commence and enrollment may complete. Expensive operations like data
serialization or the computation of key material for verification purposes with an already
heavy stack may exceed its RAM’s capacity, triggering the Pledge’s operating system to
issue an out-of-memory error, which may crash the kernel. Therefore, optimizing encoding
formats can make the difference between successful operations or a crashed kernel.

CBOR is not the only possible strategy for saving data size. In BRSKI-PRM, communication
is secured at minimum by way of guaranteeing object integrity. This is achieved by signing
messages with a private key, and verifying the signature with the corresponding public
key. The public key is typically obtained from payload header, which includes a certificate
chain. As per specification, the first certificate in this chain contains the public key of
the signer. The certificate chain may include additional certificates depending on the
implementation. Depending on the BRSKI extension, payloads are signed using different
signing protocols. While BRSKI uses CMS and BRSKI-PRM uses JOSE, cBRSKI uses a
CBOR compatible signing protocol named COSE (see Section 3.5). Swapping to CBOR and
COSE saves considerable space in the payload, as binary data is no longer required to be
encoded via Base64. In the scope of this study, a measurement of the payload size for both
requests and responses using both JSON/JWS and CBOR/COSE was conducted. This data
is depicted in Table 6.5, where one can see that the payload size is decreased considerably
for most artifacts. For verification purposes, the voucher artifact and the domain trust
chain need to exist simulatenously in system memory at the same time. Therefore, we can
estimate an upper bound of at least 8 kilobytes of available stack space.

31

6 Implementation

It is of utmost importance to ensure that the signing and verification of payloads is done
correctly. It is inadvisable to implement signing and verification algorithms manually. For
cryptographic primitives, the Rust ecosystem offers a variety of libraries, such as the ring
library [64]. However, the maturity of the ecosystem is still a concern, as libraries are still
under heavy active development and may not be suitable for production use. Since this
implementation is based on BRSKI-PRM, libraries that support JOSE were first searched
for and evaluated. JOSE-supporting backends for the popular RustCrypto ecosystem [49]
were first investigated. However, upon closer inspection, RustCrypto/jose-jws [70] only
supports parsing and serializing already signed JOSE objects. Searching crates.io [56], the
official Rust package registry, yielded a couple of promising candidates. JWS allows for
three different serialization formats for its tokens: Flattened [34, p. 7.2.2] and Compact
[34, p. 7.1] for single signature tokens, and General [34, p. 7.2.1] for multi-signature
tokens. BRSKI-PRM requires the use of the latter format, and the only available package
that supports it is josekit [33]. While being the most promising candidate, there is a
shortcoming of josekit. It supports multi-signature tokens, but only enables adding all
signatures once, at the time of creation of the JOSE object. Since BRSKI-PRM defines an
operation where a signature is added in-flight, called a Registrar Countersigned Voucher [26,
Section 7.6.3], a custom fork of the library is used in this implementation. In BRSKI-PRM,
the process of adding a signature in-flight is called countersigning.

In a multi-signature capable token, like JSON Web Signature (JWS) [34, Section 7.2.1]
and COSE [58, Section 4.5] tokens, the second and subsequent signatures are commonly
applied to the same components as the first signature, including the headers and payloads.
Additional signatures, like the first, sign the payload, but they commonly do not re-sign
any prior signatures. Therefore, in this case, each signature is independent of the others,
and the order of signatures is not important for verification. For josekit’s fork, adding a
signature to an existing token warrants first deserializing into a struct. An example object
for JWS-dependent implementations is shown in Listing 6.2. This object represents JWS
token as a Rust struct, into which JSON encoded JWS objects can be parsed.

1 struct Signature {
2 protected : String ,
3 signature : String ,
4 }
5

6 struct SignedJWS {
7 payload : String ,
8 signatures : Vec <Signature >,
9 }

Listing 6.2: Signed JWS object

The process of countersigning an object is illustrated in Figure 6.1. It is explained using the
step in the BRSKI-PRM protocol flow for the Registrar countersigning an issued Voucher
sent by the MASA. First, the token is deserialized into the SignedJWS struct, which offers
access the payload and signatures. Next, a dummy JWS token is created that contains the
original token’s payload and protected header metadata. The in-flight signing client signs

32

6.2 cBRSKI-PRM

Token Struct

payload:
Base64<Voucher>

signatures: [sig1]

MASA

Registrar

Registrar-Agent

deserialize

Dummy Token

payload:
Base64<Voucher>

signatures: [sig2]

Multisig. Token Struct

payload:
Base64<Voucher>

signatures: [sig1, sig2]

Multisig.
Token

Token

serialize

Figure 6.1: Registrar adding its signature in-flight to a Voucher containing token

this dummy JWS object, and the signature is extracted from the dummy object’s Signatures
array. With the original JWS still in deserialized form, the new computed signature can
be added to the Signatures. The resulting token now contains the original payload, the
original signature and the new signature. This workflow is the same for all tokens that
support multiple signatures, and can be used to add signatures to any token that supports
multiple signatures, such as JWS and COSE tokens.

Subsection 6.2.1 discusses the implementation of a different encoding and signature
format. In order to enable the use of different signing protocols, this implementation
abstracts the signing and verification of payloads into a separate module. This module
can be easily replaced with a different implementation, allowing for the use of different
signing protocols. To facilitate this, this implementation defines a multitude of interfaces
that need to be implemented by any signing and verification module. All signing and
verification modules share a set of supported algorithms, as well as a unified set of header
fields that may be used. For example, a header may include a certificate chain used to
verify the signature, a nonce to prevent replay attacks, as well as a subject key identifier to
identify the signer. Each signing and verification module must implement the interfaces
defined in the module, and must be able to sign and verify payloads using the algorithms
defined in the module. A concrete implementation must implement a sign and verify
function, as well as an add_signature function to add a signature to a payload in-flight. The
interfaces are defined as per Listing A.3. Using this technique allows frictionless swapping
of signature algorithms and encoding formats. This is especially useful in the context of
BRSKI, where different extensions use different signing protocols. Finally, binary signing
and verification schemes for human-readable alternatives can be swapped out on the fly,
which is useful for debugging and testing purposes.

33

6 Implementation

Function Description UUID

Service 9b574847-f706-436c-bed7-fc01eb0965c1
TPVR Read 9b574847-f706-436c-bed7-fc01eb0965c2

Write 9b574847-f706-436c-bed7-fc01eb0965c3

Table 6.6: UUIDs mapped to BRSKI-PRM REST routes

6.2.2 Bluetooth Low Energy

As mentioned in Chapter 4, we aim to create an enrollment prototype with capabilities
for network-less communication, using the Android Registrar-Agent as a proxy to com-
municate with the Domain-Registrar. While the first version of the prototype is based
on using a web server for IP-based communication BLE communication was later built
into the ESP32-based Pledge. Because the Android phone also has native BLE capabilities,
Pledge and Registrar-Agent can use this communication bridge to enable the Pledge to be
enrolled without the need for a prior network connection.

BRSKI and its extensions make use of REST over HTTP, using both HTTP routes and
GET and POST requests to communicate intent when exchanging data. Using GATT’s
structured architecture allows mapping each REST route to a BLE service. Instead of
using a URI path like in REST, BLE makes use of predefined, static UUIDs to differentiate
between different services. The process itself is the same for all operations. Each route
described in Table 6.4 is mapped to a threefold bundle of UUIDs, one for identifying the
service and two for the reading and writing characteristics. Table 6.6 shows an example of
the mapping of a single REST route to a BLE service with a read- and a write-characteristic.
The full mapping table is shown in Table B.1. Each service’s UUID is incremented by one
for the read and write characteristics, respectively, to ensure a unique mapping for each
route and also to ensure that UUIDs are kept in a structured order.

A bespoke BLE Router enables the structured registration of these Bluetooth routes, similar
to a REST router in a web server. The BLE router is responsible for managing the mapping
of routes to services and for handling the communication between the Pledge and the
Registrar-Agent. Inside a registered service, the write and read characteristic share a
buffer, which is first used to store the request data sent from a client, allowing the server
to transform this data into a response when the read characteristic is queried. When
reading the computed data via the read characteristic, the server serializes the computed
data into a response. Most BLE devices appear handle advertisement of their services
and characteristics via a technique called Legacy Advertisement [28] [20, Ext-Adv]. The
advertising strategy transmits the advertisement data, which includes the BLE server’s
name, as well as a list of services and characteristics via a single packet. This packet
is limited to a size of 31 bytes, which is not enough for the number of services made
available as show in Table B.1. This warrants a switch to a relatively new advertising
strategy, called Extended Advertising [48] [30, B-2.3.4]. It allows for larger advertising

34

6.2 cBRSKI-PRM

frames of up to 1650 bytes [30, B-2.3.4.9], which is more than enough to advertise all
services and characteristics.

This concrete implementation uses NIMBLE as the BLE stack, which is a lightweight, open-
source BLE implementation for embedded devices. The Registrar-Agent acts as a GATT
client, while the Pledge acts as a GATT server, which is also called a central device. Since
BRSKI-PRM payloads can be larger than the maximum BLE packet size, a bespoke packet
fragmentation mechanism is used to split the payload into smaller chunks, which are then
sent over multiple packets. This mechanism is further described in Subsection 6.2.2. The
communication process between the client and server is as seen in Figure 6.2.

loop

Pledge Registrar-Agent

ADVERTISE: all services

SUBSCRIBE

WRITE WITH ACKNOWLEDGEMENT

ACK

SUBSCRIPTION EVENT

loop
READ

READ RESULT

WRITE WITH ACK

UNSUBSCRIBE

1

2

3

4

5

6

7

8

9

Figure 6.2: BLE packet exchange using GATT

The process unfolds as follows: When the Central is powered on, it begins by advertising
all available services via their UUIDs (1). Each service is associated with a pair of char-
acteristics for writing and reading data. Instead of initiating a traditional request, the
client subscribes to the write-enabled characteristic (2), transmits data in chunks (3), and
receives a confirmation for each write operation (4). Once all data is received, deserialized,
and processed by the Central, a subscription event is triggered (5). Upon completing
its computations, the Pledge serializes the response data and writes it to the designated
read-enabled characteristic. The client then reads the response in chunks (6), obtains the
complete result (7), and confirms the successful data retrieval (8). Finally, the subscription
to the characteristic is terminated (9).

35

6 Implementation

Bluetooth Low Energy has a maximum limit of 512 bytes per characteristic value [30,
p. 3.2.9]. This limit is only sparsely mentioned in the BLE specification documents, and
may differ between implementations. While the ESP32 BLE implementation appears to
not follow the specification closely in this regard [20, ATTR_LEN], the native Android BLE
implementation will refuse to handle characteristic values larger than the aforementioned
limit [29]. This restriction is not to be confused with the negotiated GATT packet size,
which is a separate value and is also known as a BLE MTU, often set to 23 bytes [30,
A-5.1]. BLE already supports sending payloads which are larger than the negotiated MTU
by splitting the payload into multiple packets, but only up to the aforementioned 512
byte limit. This is a problem when transferring BRSKI and BRSKI-PRM payloads, as the
certificate chain included in the exchanged payloads often increases the data swapped
between Pledge and Registrar-Agent past this ceiling.

To circumvent this limitation, a bespoke packet fragmentation mechanism was imple-
mented, which lives on top of the BLE stack. This mechanism splits the payload into
smaller fragments, which can then be sent in sequence by writing a characteristic’s value
for each chunk until the entire payload is sent and can be consumed by the server. A
single frame is defined as per Listing A.6, which will now be explained. First, the code
defines the maximum size of a native BLE packet (0). A data frame consists of a header
(1) with meta-information, and a byte buffer of data (2). The size of the data buffer is
calculated during compile-time by subtracting the size of the header from the maximum
BLE payload size (3). This ensures that the frame is always the same size, regardless of the
payload size. While some efficiency is lost by padding the data, this approach simplifies
the implementation and makes it easier to handle the data on the receiving end. The offset
field (4) is used to determine the position of the frame in the payload, while the ident field
(5) is used to distinguish the origin characteristic of the packet. The length field (6) is used
to determine the number of packets that will be sent within a transmission stream until
the data is complete.

For each single service route defined by a read- and a write-characteristic, a writing and
reading functionality is defined in the router. The writing functionality is responsible
for fragmenting the data into frames and sending them to the Pledge. It is displayed in
Listing A.4. It works as follows: First, the data is received from the writing characteristic
(1) and deserialized into a data frame (2). Next, the target length and offset from the
data frame are extracted (3, 4), after which the data frame is pushed into a buffer (5). If
the data frame buffer reaches the intended length, the buffer is sorted by offset (6) and
concatenated a single payload (7, 8). To save stack space, the buffer is then cleared (9),
after which the payload is sent to the route handler (10). Once a lock is acquired on the
computed buffer mutex, it is also cleared (11). Finally, the computed buffer is extended
with the resulting data from the route handler. (12)

The reading functionality is responsible for sending the data back to the client. It is
displayed in Listing A.5, and works like detailed in the following paragraph: First, a lock
on the computed buffer pointer is acquired (1). Then, characteristic identifier is extracted
from the characteristic’s address (2). The computed buffer is split into frames (3), which

36

6.3 Android Registrar-Agent

at this point is just raw binary data. Before enumerating through all frames, a buffer is
created (4), which will contain a single serialized frame. For each frame, the frame is
serialized into the buffer (5). Finally, the value of the reading characteristic is set to a
pointer to the buffer (6).

In conclusion, this chapter outlines the critical extensions made to the cBRSKI-PRM
protocol, focusing on improving efficiency and flexibility for constrained devices. By
exploring the transition from JSON/JWS to CBOR/COSE for serialization and signature
formats, we demonstrated significant space savings, highlighting the impact of reduced
overhead on system performance, especially in resource-limited environments. The
performance benefits of CBOR over JSON, along with its ability to directly encode binary
data without the need for Base64, were quantified through size comparisons of different
BRSKI-PRM artifacts. This optimization proves essential for devices like Pledges, where
memory constraints can lead to system failures without such improvements.

6.3 Android Registrar-Agent

As mentioned in Section 5.2, the concrete prototype of the Registrar-Agent is implemented
on an Android phone. It is used as a co-located enrollment tool as specified in BRSKI,
functioning as a proxy component to facilitate communication between the Pledge and
the Registrar.

The prototype is implemented using the open-source UI kit flutter, which uses the Dart
programming language and allows for the development of cross-platform applications.
The application is designed to be user-friendly and easy to use, with a simple interface
that hides as much of the complexity of the BRSKI protocol as possible. The first screen of
the application shows an initially empty list of discovered devices, which are pledges that
are currently in the network. For development purposes, the application is preconfigured
to only work with a single Pledge, and it will automatically ping the Pledge’s IP address
and port, waiting for an answer to finish the discovery process.

Since the Pledge’s definition in the BRSKI-PRM specification was extended in this study
to further include the exchange of pre-enrollment information, the Registrar-Agent first
queries the Pledge for its capabilities. This information is then displayed to the user, along
with the Pledge’s serial number. Using this information, the user can then decide to start
the enrollment process, which communicates to the android phone that the necessary
enrollment artifacts are to be sent to the Pledge. The application will then guide the user
through the process, showing the current state of the Pledge and the Registrar, as well as
any errors that might occur during the process.

The implementation of the BRSKI-PRM protocol as a library in Section 6.1 allows the
use of safe Rust code on the Android platform. By use of an FFI bridge, Rust code can
be run natively on the Android device, where it interacts with Dart code using a Foreign
Function Interface. This ensures that the communication between the Pledge and the
Registrar is secure and reliable, while still providing a user-friendly interface for the user

37

6 Implementation

to interact with. It also allows easier testing of the initial Rust-only prototype and keep
the android-specific code separate from the core functionality of the Registrar-Agent.

There are a variety of ways to integrate Rust code into android applications. This study
utilizes Flutter Rust Bridge [27], a library that allows for the seamless integration of Rust
code into flutter applications. It provides a simple interface for calling Rust functions from
Dart code, which enables calling Rust code in the background of the flutter application.
The bridge library comes with a code generation tool, which can automatically generate
the necessary bindings between Rust and Dart code. This way, one can easily call Rust
functions from the Dart code, and vice versa, without having to write the bindings
ourselves.

In order to communicate with pledges that support different transport protocols, Registrar-
Agent implementations need to be able to consume the provided library and provide an
implementation of a common connection interface. In Rust, interfaces are defined as
traits, and the implementation of a trait can be provided for any structural type. The
Pledge-Communication-Interface is defined in Listing A.7.

The Rust programming language does not use inheritance as found in common object-
oriented programming languages like Java or C++. Instead, it relies on so-called supertraits,
which defines any interface as a subset of another. In this case, the PledgeCommunicator
trait is defined as a subset of the Send and Sync traits (1), which are used to define whether
a type can be sent between threads and shared between threads, respectively. This allows,
but does not limit implementing members of this trait to be used in a multithreaded
context. Using the PledgeCommunicator trait requires implementing structures to define
functions that send different types of messages to the Pledge. How that data is sent is left
to the implementation, which can be over a network, serial port, or any other transport
protocol. Each required function can be mapped to a function in Table 6.4. Each function
takes a Vec<u8> as the message to be sent (3), and a PledgeCtx (4)(6) which contains
information about the Pledge that the data is sent to. The functions are asynchronous,
returning a Result type that can either be an error or a successful response (5). Like input
data, output data is also formatted as a vector of bytes.

We provides implementations of the PledgeCommunicator trait, for example in the form
of the HTTPCommunicator structure. For example, the send_pvr_trigger function in the
HTTPCommunicator structure sends a POST request to the Pledge’s URL with the trig-
ger data in the body. An implementation for the HTTPCommunicator can be seen in
Listing A.8.

The HTTPCommunicator structure (1) contains a reqwest::Client instance. A popular HTTP
client library, reqwest [45], provides a simple interface for sending HTTP requests. The
send_pvr_trigger function constructs the URL to send the trigger data to (2). It then
sets the HTTP ACCEPT header, which denotes the MIME type the sender, in this case,
the Registrar-Agent, is willing to accept for a response. The CONTENT_TYPE header is
set to the Pledge’s supported data interchange format (5). Both are set to values which
the Registrar-Agent client has previously acquired from the Pledge before starting the

38

6.3 Android Registrar-Agent

enrollment process. The payload is sent in the body of the POST request (6). The response
is then checked for success (7), and if successful, the response data is converted to a vector
of bytes (8) and returned.

Using the PledgeCommunicator trait allows easily switching between different implemen-
tations of the Pledge communication interface. It is also a shared interface between the
Android and the Rust implementation, allowing for easy testing of the Rust implemen-
tation on a desktop machine before deploying it to the Android device. For Bluetooth
Low Energy, an implementation of the PledgeCommunicator trait in the form of the FFI-
BLECommunicator structure is provided. It is a more complex structure compared to the
HTTPCommunicator, as it needs to handle the communication between the Dart code and
the Rust code and needs to make use of auto-generated, interfacing code. It is defined as
follows in Listing A.9. Due to Rust’s focus on correctness, correct typing for structures
containing pointers to asynchronous, thread-safe functions shared among FFI bounds
can get unwieldy. The function ffi_send_pvr_trigger (1) serves as an example to showcase
the trade-off between security and inherent type-complexity which satisfies the compiler.
Arc (2) is a Rust type for Atomic Reference Counted pointers. It is needed for multiple,
read-only references to the same data. In this context, Arc ensures that the function can
be safely shared across multiple threads. Box (3) is a smart pointer that allocates data on
the heap. It provides a pointer type for explicit allocations of data where the size is not
known at compile time. In Rust, dyn Fn (4) is a type for objects of some shared interface
which represent a function or closure. DartFnFuture<Vec<u8» is the return type of the
function. It represents a Dart-compatible future provided by rust_flutter_bridge that will
eventually resolve to a Vec<u8>. The FFIBLECommunicator structure contains pointers
to concrete implementations used by the methods defined in the PledgeCommunicator
trait. Instead of the implementation living directly in the interface implementation, the
corresponding FFI boundary partner is used to send the payload to the Pledge (1).

To create an instance of a FFI bridge, the FFIBLECommunicator structure is used as per
Listing A.11. The Android Dart code makes use of the getPledgeFFIBootstrapper function
(0) to create an instance of the Bootstrapper class, which contains the FFIBLECommunicator
instance. A reference to a BleRouter class is passed to the function (1), which is used to
route the trigger data to the correct BLE characteristic. It is an analogue implementation of
the BleRouter structure in Rust (see Subsection 6.2.2). A reference to a CharacteristicPack-
age class is also passed to the function (2), which contains references to the UUIDs which
identifiy the BLE characteristics used to communicate with the Pledge. The FFIBLECom-
municatorBuilder is initialized (3), and the setPvrFfi function is called to set the function
that will be called when the send_pvr_trigger function is called (4). The build function
is then called to create the FFIBLECommunicator instance (5). The Bootstrapper class is
then initialized with the FFIBLECommunicator instance (6) and config object and returned.
The config object contains the certificates and private and public keys needed for the
BRSKI-specific communication. In the prototype, these are included in the application
assets included in the Flutter application. In a production environment, these would be
securely stored on the device, inside the trust store.

39

6 Implementation

When a service operator scans for Pledges in the general vicinity of the Registrar-Agent, the
Flutter application will display a list of discovered Pledges. With the click on connect, the
Android device will establish a Bluetooth Low Energy connection to the Pledge and start
the enrollment process. A depiction of this is available in Figure D.1. When enrollment is
complete, the Pledge will disappear from the selection list and the user will be notified of
the successful enrollment. There is also a debug screen available to the operator, which
shows the characteristics of the connected Pledge, as seen in Figure D.2.

6.4 ESP32 Prototype

As previously mentioned, in this study’s scenario, the Pledge is an ESP32 with entirely
custom firmware. In this section, the functionality of the software and the protocol
extensions, as well as all the work that went into enhancing existing technology, will be
described.

6.4.1 Research and Setup

There exists a vast variety of ESP32 devices on different architectures [9]. The prototype
detailed in this study was developed on a ESP32-C3, which is a low-power, low-cost
device with a RISC-V architecture. Although it is not as powerful as the ESP32-S3, it is
more than sufficient for running cBRSKI-PRM. In theory, 16KB of flash storage and 8KB
of memory are more than enough, but more powerful devices are easier to work with
during development. After the prototype was finished, the maximum memory usage of
the firmware was measured in order to determine the minimum requirements for cBRSKI-
PRM. Since one of the requirements is the development of memory safe and reliable
software, a Rust programming environment was set up for the ESP32-C3. Espressif
delivers an official software development kit for all their devices, with additional Rust
bindings to the C-native SDK.

To run the firmware on the ESP32-C3 during testing, a small laboratory environment was
installed on a breadboard (see Figure 6.3). In order to prove the compatibility with more
than one device, the firmware was tested on additional Espressif devices. The rightmost
device is an ESP32-C3-DevKitM-1 [16] based on the ESP32-C3-Mini-1. The ESP32-C3-
DevKitM-1 is a development board with 4 MB of available flash storage and a 400 KB
SRAM module. This limited amount of memory was a definite challenge during initial
testing. Therefore, a ESP32-C6-DevKitM-1 [17] based on the ESP32-C6-MINI-1(U) (at
the right-hand side) was also acquired. Development on embedded chips can be difficult,
and errors may be difficult to debug with just a serial console. For debugging purposes, a
ESP-PROG debug board [19] was connected to the ESP32-C3-DevKitM-1. Debugging Rust
firmware on the ESP32 platform is relatively novel. At the time of writing, debugging
using the ESP-PROG board was error-prone. The ESP32-S3-DevKitC-1 [18] (on the left-
hand side) includes a built-in debugger, which worked better. However, the board is based
on the XTENSA architecture, which came with its own set of challenges. Cooperation

40

6.4 ESP32 Prototype

Figure 6.3: A test environment featuring different Espressif devices

with Espressif’s Rust team was necessary to overcome these challenges. The Espressif
team removed OpenSSL support in newer versions of the ESP-IDF, which was necessary
for cryptographic operations. They instead now rely on WolfSSL or mbedTLS, which at
the time of writing offered no Rust bindings. Cooperative work with ring’s author, Brian
Smith, enabled the use of cryptographic primitives based on BoringSSL in the firmware.
With a working development environment, the firmware was developed and tested on the
ESP32-C3-DevKitM-1.

6.4.2 Pre-Enrollment Status Query

Pledges may be arbitrary powerful and may support different serialization formats to
handle the data exchange. Ideally, cBRSKI-PRM’s Pledges should be able to handle both
JOSE and COSE encoded data. Pledges may also offer just a limited set of signature
algorithms, or may not support all the algorithms that the Registrar-Agent supports.
To handle these cases, the Pledge should be able to advertise its capabilities before the
enrollment process starts. There is another reason than extensibility or flexibility to
include this context providing functionality on top of the BRSKI-PRM standard. Since
cBRSKI-PRM’s prototype does not use IP-based communication, the context usually
provided by HTTP headers is missing. As mentioned in Section 5.5, BRSKI-PRM uses
CONTENT-TYPE and ACCEPT or accept headers to negotiate the format of the message
and the response. BLE does not have such a content negotiation mechanism. The pledge
must instead include such information in the capability advertisement step. For this,
two additional endpoints are added to the pledge’s service. The first endpoint returns a
DataInterchangeFormat (DIF) enum, which is defined in Listing 6.3. This resource will
return the encoding format that the Pledge is able to handle. At the time of writing, the

41

6 Implementation

Pledge is able to handle both JOSE and COSE encoded data, as defined in Listing 6.3. The
data interchange format is always returned as a UTF-8 encoded string.

1 enum DataInterchangeFormat {
2 JSON ,
3 CBOR ,
4 }

Listing 6.3: DataInterchangeFormat Enum Values

Once the Registrar-Agent has received the Pledge’s data interchange format, it can then
query the Pledge’s capabilities by using the PledgeInformation resource. This resource
will return the Pledge’s capabilities in the structure defined in Listing A.12. Before the
firmware is flashed onto the Pledge, manufacturers statically set the Pledge’s capabilities.
Neither the DIF nor the PI resource is encrypted nor signed by the Pledge, since it does not
contain critical information. Upon receiving the Pledge’s capabilities, the Registrar-Agent
can then enter a code path that is able to handle the correct payload format and signature
containing data types.

6.4.3 ESP32 firmware

The ESP32 firmware is based on the ESP32 SDK provided by Espressif. It is a composition
of device APIs of various complexity, ranging from simple GPIO control to wireless con-
figuration or interaction with the device’s flash storage. Rust abstractions and translations
for this SDK are available within the esp-rs project on GitHub [12]. There, community
members and Espressif employees maintain a selection of Rust libraries for working with
ESP32 devices. There are three different abstraction levels for working with the ESP32 in
Rust, all of which are used in the prototype. First, esp-idf-svc [14] offers a higher level of
abstraction over the native ESP32 functionality. While ESP-IDF-SVC is a good starting
point, it offers neither Bluetooth Low Energy nor a task API. The library esp-idf-sys [15]
offers a lower level of abstraction, which is necessary for working with the ESP32’s Blue-
tooth stack [15]. It is used in this prototype for interaction with the ESP32’s RTOS, the
task management system, as well as manipulating the watchdog timer and the ESP32’s
NVS storage. Finally, esp-hal [13] offers a direct interface to the ESP32’s hardware, which
is necessary for working with the ESP32’s GPIO pins and UART module.

ESP32 projects using the ESP32 SDK are configured using Kconfig, which is a menu-based
configuration system also employed by the Linux kernel [20]. This prototype uses a
configuration file akin to the one shown in Listing A.13. First, the maximum stack size for
the main task and the NimBLE host task (1)(2) needs to be increased. This is necessary
since the ESP32’s default stack size is too small to run Rust code, which uses more stack
space per default as compared to C programs. The next options enable the Bluetooth
stack and the NimBLE host stack (3), which is a lightweight Bluetooth Low Energy
implementation more suitable for embedded devices. They further enable the NimBLE
host stack to persist its state in the ESP32’s flash storage. As described in Subsection 6.2.2,
legacy BLE advertising cannot handle the number of services that the Pledge will offer.

42

6.4 ESP32 Prototype

Therefore, the extended advertising feature is enabled (4). Because classic Bluetooth is
not needed for this project, it is disabled (5). The system is also configured to halt on a
kernel panic (6), which is useful for debugging purposes. Finally, the firmware is larger
than intended by Espressif and does not fit on the default application partition. To fix
this, the partition table needs to be adjusted.

1 # ESP -IDF Partition Table
2 # Name , Type , SubType , Offset , Size , Flags
3 nvs ,data ,nvs ,0 x9000 ,0 x6000 ,, # (1)
4 phy_init ,data ,phy ,0 xf000 ,0 x1000 ,, # (2)
5 factory ,app ,factory ,0 x10000 ,3M,, # (3)

Listing 6.4: Partitions as per partitions.csv

The partition table is defined in a CSV-like format. It defines the partitions that the ESP32’s
flash storage is divided into. First, the NVS partition is defined (1) for the NimBLE BLE
stack. It is also used to save the Pledge’s configuration, as well as the Pledge’s private key
and factory certificate. The NVS partition will also be used to store the domain certificate
issued by the Registrar. Next, the phy_init partition (2) is used to store calibration data
for the ESP32’s radio, which also includes Wi-Fi and BLE. Finally, the factory partition (3)
holds the firmware image.

The planned architecture warrants the usage of both the ESP32’s Wi-Fi Mode and using
Bluetooth Low Energy. Most ESP32 Devices only have a single 2.4 GHz antenna, which
means that the Pledge can only be in one mode at a time. While the SDK offers functions
to switch between modes, there is no native support for task switching which could allow
yielding control to another task. To overcome this challenge, the ESP32’s RTOS is used
in tandem with Rust’s async support, to handle the switching of modes asynchronously.
Switching tasks manually is complex and difficult to use correctly, which is why this
prototype uses both tokio [40] and mio [41]. They are asynchronous runtimes designed
to handle task switching. Their exact setup is shown in Listing A.14. First, using mio
warrants enabling eventfd on the ESP32 (1), which is a file descriptor that can be used to
signal events between tasks. Asynchronous runtimes for Rust on the ESP32 use this file
descriptor to signal that a task needs to be polled, which is the term used for checking if
a task has new work. the asynchronous runtime is started in the firmware’s main task.
Since the ESP32 offers only a single compute core, the runtime is configured to run in
single-core mode (2). Calling enable_all (3) enables asynchronous time-based events, as
well as IO events, which are necessary for both using Wi-Fi and Bluetooth. The runtime is
then built (4) and the main task is started (5).

The firmware’s main task is shown in Listing A.15 and will be explained as follows. It
first sets up a pointer to the device’s peripherals (1), as well as a reference to the ESP32’s
native system event loop. Next, a timer service is initialized (3) and a reference to the
ESP32’s default NVS partition is created (4). The ESP-32’s WiFi stack is initialized (5) by
using the modem peripheral, a reference RTOS sysloop and the aforementioned pointer
to the NVS partition. For asynchronous task switching, the WiFi peripheral is wrapped in
an async context (6). Both WiFi and BLE are started concurrently (7) using tokio’s join!

43

6 Implementation

macro. To stop the firmware from immediately exiting, the main task is put to sleep for a
second (8) if no work is available. However, stopping the main task like this comes with a
disadvantage. In order to prevent loose tasks from blocking the main thread indefinitely,
the ESP32’s RTOS will kill a task if no event is sent for a certain amount of time. Each
task has a watchdog timer that needs to be reset periodically, as shown in Listing A.16.

44

7 Evaluation

This chapter evaluates the proposed scheme’s implementation as discussed in Chapter 6.
Here, the cBRSKI-PRM protocol and its prototype implementation, the details of which
answered RQ3, are first compared with BRSKI-PRM. For each change made, the protocol
extension and the prototype implementation will be analyzed to measure the impact on
security, usability, and performance. It is of utmost importance to ensure that no new
vulnerabilities are introduced by the changes made. The goal of this comparison is to
ensure that the cBRSKI-PRM protocol is at least as secure as BRSKI-PRM.

Next, potential attack vectors will be examined. By identifying potential scenarios where
the system could be exploited by an attacker, a better understanding of where the system
is vulnerable to manipulation can be achieved.

7.1 Comparison of BRSKI-PRM and cBRSKI-PRM

Compared to BRSKI-PRM, cBRSKI-PRM is technically not reliant on a specific data
encoding and signature scheme. At the time of writing, the prototype supports the use
of both JSON and JOSE, as well as CBOR and COSE. This study’s prototype has not
implemented bespoke cryptographic schemes, choosing instead to rely on popular and
well-established libraries. The chosen JSON and JOSE libraries rely on OpenSSL [22]
[24] for cryptographic operations. As per the BRSKI-PRM specification, the signature
algorithm used in this work is based on Elliptic Curve Cryptography (ECC) [47] with
the NIST P-256 curve [39]. The NIST P256 curve is widely used in the industry and
is considered secure, offering a good balance between secure keys and minimal key
size. A dynamic linking approach is used to ensure that the system’s default version of
OpenSSL is used. This allows the implementation to offer a high degree of flexibility, as
potential OpenSSL security updates can be applied without the need to recompile the
implementation by way of system updates. For CBOR and COSE, the libraries cborium[46]
and coset[6] were used. Both do not include any cryptographic operations, but instead
focus on encoding and decoding data. Instead, they offer the library’s consumer to provide
their own cryptographic operations. For work with CBOR and COSE on embedded devices
shipping withoutOpenSSL, the prototype uses ring [64] for cryptographic operations. Ring
uses a Google SSL implementation called BoringSSL, which is relied upon by multiple
well-known companies such as Cloudflare. This work relies on well-established, security-
proven libraries for any cryptographic operations, which should instill confidence that
the protocol’s cryptographic operations are as secure as possible.

The cBRSKI-PRM protocol adds two new information endpoints to pledges, which regis-
trars can access by way of proxy using the Registrar-Agent. They broadcast the Pledge’s
capabilities, including but not limited to the Pledge’s supported data encoding protocol,
signature schemes and supported key types. This potentially allows Registrars to imple-

45

7 Evaluation

ment a security strategy, with which they can decide whether to enroll pledges based on
this information. If the Pledge’s supported key type or signature scheme is considered
not secure enough, the Registrar can choose to not enroll the Pledge. On the other hand,
Pledges may support a variety of key types and signature schemes, which eliminates the
risk of the Registrar’s requested key type or signature scheme not being supported, which
could lead to a failed enrollment, requiring the Registrar-Agent to re-trigger the enroll-
ment process. This process was implemented to reach feature parity with BRSKI-PRM, in
which such information is negotiated by way of HTTP header information the partaking
parties exchange. Since cBRSKI-PRM does not add any security-dependent features, the
security of the underlying protocol is not impacted by this change.

cBRSKI-PRM foregoes IP-based protocols in favor of a more flexible, transport-agnostic
approach. The study’s prototype relies on BLE as a transport protocol, but only for the data
exchange between Pledge and Registrar-Agent. MASA and Registrar communication is
done as in BRSKI-PRM, using HTTP with optional TLS support for secure communication.
In BRSKI-PRM, Pledge and Registrar-Agent initially communicate using HTTP, but they
may use HTTPS for secure communication later in the process. Instead of encryption,
BRSKI and its extensions rely on transport security by guaranteeing payload integrity
using signature schemes. This security guarantee is not lost when transferring data over
BLE, even if the data is fragmented and reassembled during the communication process.
When data is deserialized by the server or the client, it must be reassembled in its entirety,
upon which the signature will be verified, just as in BRSKI. BLE is also not without
optional security primitives. Depending on the implementation, cBRSKI-PRM can use
BLE security features when first establishing a connection between the client and server.
However, BRSKI-PRM’s security guarantees are still upheld even if this step is skipped.

Finally, the prototype showcased in this work is based upon a Registrar using an Android
phone, as well as a Pledge using a ESP32. Theoretically, the key material should always
be stored in the device’s trust store, which for android is a secure enclave, and for the
ESP32 is a secure element which reserved space on the chip, utilizing flash or partition
encryption for NVS storage where the certificate and key material is placed. To make
the ESP32 even more secure in production environments, the JTAG/UART Boot eFuse
should be permanently burned [11] [8], disabling the ability for JTAG debugging [10].
They should furthermore enable Secure Boot, which is a feature of the ESP32 that allows
the device to boot securely, ensuring that only signed firmware is booted. For maximum
security, vendors should make use of encryption firmware, which encrypts the firmware
and data stored in the flash memory. By targeting embedded devices, the cBRSKI-PRM
protocol introduces a new attack vector, which is the device itself. These devices are often
physically accessible, and therefore can be tampered with. To mitigate this, the devices
should be stored in secure locations, and tamper-evident seals should be used to detect
unauthorized access. Finally, the ESP32 device is just an example used within the scope of
this work. The cBRSKI-PRM protocol is not limited to this device and can be used with
any device that supports BLE communication or potentially any other transport protocol.
A chip’s security features are dependent on its vendor, and therefore the security of the

46

7.2 Attack Vectors

device is dependent on the vendor’s implementation of these features. This identifies the
chip itself as the biggest introducer of potential security flaws.

7.2 Attack Vectors

The cBRSKI-PRM protocol introduces new attack vectors, some of which are inherent to
the use of BLE as a transport protocol. Others are introduced by the specific embedded
platform that may be used to implement the protocol.

The ESP32 specifically offers a variety of security features that can mitigate these risks [21].
For example, the Secure Boot feature ensures that only signed firmware is booted, and the
Flash Encryption feature encrypts the firmware and data stored in the flash memory. It also
offers aDevice Identity feature, where a private key is stored in a secure enclave on the chip.
This private key can be used to sign data via the chip’s hardware cryptographic accelerator,
but the key itself cannot be extracted from the chip. While this is not enough for a BRSKI
implementation, since the chip’s private key does not come with an accompanying vendor
certificate, it is a good start. Additionally, the ESP32 supports optional Memory Protection,
which protects the chip’s firmware from manipulation by third-party peripheral code that
may interact with the chip. There is also the option of disabling any outfacing debug
interfaces, such as JTAG, to prevent unauthorized access to the chip. Finally, the ESP32
offers Secure Storage, a secure NVS partition that can be used to store sensitive data, such
as certificates and keys, and which is used in the implementation of this work. While the
ESP32 SDK offers a variety of security features, it is up to the developer to use of them.
Ultimately, the security of the device is dependent on the customer’s chip choice and the
vendor’s implementation of security features.

BLE is a wireless protocol, and as such, it is susceptible to interference and eavesdropping.
An attacker could potentially intercept the communication between the Pledge and the
Registrar-Agent, since BRSKI does not rely on encryption for the data exchange. However,
the security of the protocol is not compromised, as BRSKI requests are signed by the
Pledge, which the Registrar can verify with the help of the vendor. If the Pledge’s
certificate is properly stored in a secure enclave and is not accessible by a rogue entity,
the object security of the swapped data is guaranteed. BRSKI objects also come with a
replay protection mechanism, which ensures that the same request cannot be replayed by
an attacker. Therefore, and contrary to environments where encrypted communication
is required, the security of the protocol is not impacted when using unencrypted BLE
communication. The ESP32 prototype is also not susceptible to downgrading connections
to legacy BLE pairing methods, where encryption may be weaker.

However, there is a clear weak point that comes with Pledge’s offering an open access
port to third parties. The device is limited in power, and technically anyone can send
data to any characteristic that the device offers. This is a potential attack vector, as an
attacker could potentially send numerous crafted requests to the Pledge, which could lead
to a denial of service attack. They could also send a single, large payload to the device

47

7 Evaluation

which could potentially overflow the device’s stack, leading to a stack overflow attack
and a crash of the device’s firmware. However, the device is set to reset after a kernel
panic, which would render the attack effective only once per request. There is a potential
way to mitigate this attack vector. The prototype rejects any packets that are not in the
format described in Subsection 6.2.2. It also stops deserializing the packet if the number
of packets specified in the frame’s header is exceeded. To avoid a buffer overflow crashing
the kernel, one could add a check on each frame’s deserialization that returns an error if
the frame’s size exceeds the available stack space.

48

8 Discussion & Future Work

This research contributes to the field of IoT-security by addressing the unique challenges
posed by constrained devices during the initial enrollment phase. By building upon
existing research, a hybrid approach that combines BRSKI-PRM and cBRSKI was devel-
oped. The cBRSKI-PRM protocol demonstrates enhanced compatibility with low-powered
devices while maintaining the security guarantees of BRSKI-PRM. Finally, feasibility of
the proposed scheme was shown successfully by implementing a prototype using an
Android phone and a ESP32.

The proposed protocol introduces BLE as a novel transport approach for the BRSKI
protocol family. This technique equips the protocol with the ability to enroll devices that
are not capable of using IP-based protocols, or which are intended to be disconnected
from a network during enrollment. The adoption of CBOR and COSE and introduced
in cBRSKI allows glsBRSKI-PRM’s architecture to support a wider range of devices. For
example, by eliminating BRSKI-PRM’s reliance on JSON and JOSE, the scheme can now
enroll devices where payload data size would be a limiting factor. In turn, BRSKI-PRM’s
Registrar-Agent as a proxy component between Pledge and the Domain-Registrar further
enhances the protocol for use in environments where the Pledge and the Domain Registrar
do not exist on the same network. It also supports scenarios where there is a logical
boundary between the Pledge and the Registrar as a potential domain critical component.

A working Android companion app, which acts as a Registrar-Agent, demonstrates that
the protocol’s comissioning tool can be used in a real-world scenario. The phone provides
a user interface on a familiar device, which gives technicians and domain operators an
easy tool to initiate the enrollment process for a Pledge. By needing manual intervention
in the way of a single button press if a nearby Pledge is detected, the trigger mechanism
for the enrollment process is user-friendly.

Using the Rust programming language leverages the language’s safety features to ensure
that the implementation is robust and memory secure. Public cryptographic libraries,
which are widely used and have been tested in the field, were made use of to deliver
maximum security for cryptographic operations. Valuable feedback, as well as software
fixes were also provided to the Rust Espressif community. Furthermore, within the
scope of this work, collaboration with various open-source projects and communities
was achieved. Contributing to the open-source community is a key aspect of this work,
as it helps to improve the security of the IoT ecosystem. For example, critical bugs in
the ESP32’s flash tool for Rust applications were pinpointed and fixed through a group
effort. Contributions also helped the Ring project by improving their documentation, as
well as working together with Ring’s maintainers to compile the library for XTENSA and
Risc-V architectures. The Rust ESP32 effort was helped in its entirety by implementing
missing features, such as critical missing functionality in the device’s NimBLE stack.
Working closely with BRSKI-PRM’s architects, Siemens, the first open-source up-to-spec

49

8 Discussion & Future Work

implementation of the protocol was developed. As of the time of writing, BRSKI-PRM
was still an internet draft on its way to becoming a ratified RFC document, which has
since finished. Our cooperating effort will be forever marked in this RFC, and this work’s
author’s name has been included in the contributor section of the RFC document. The
prototype developed in this work is also linked in the document.

Finally, the feasibility of the protocol and its prototype implementation was demonstrated
not only in this work, but also in a six-page paper submitted to the 20th European
Dependable Computing Conference (EDCC) conference. As of time of writing, this work
has been accepted for publication in the conference’s proceedings.

50

9 Conclusion

This thesis has addressed the critical challenges of securely enrollment constrained IoT
devices into enterprise networks. By analyzing existing protocols and identifying their
limitations, cBRSKI-PRM, a hybrid protocol that combines the strengths of BRSKI-PRM
and cBRSKI, was proposed and implemented. This novel approach leverages Bluetooth
Low Energy (BLE) as an out-of-band communication channel, ensuring compatibility with
low-powered devices while maintaining robust security. The design, implementation, and
evaluation of cBRSKI-PRM demonstrated the feasibility and effectiveness of the proposed
solution. The protocol not only bridges significant gaps in existing standards but also
ensures scalability, minimal user intervention, and compliance with security requirements.
Furthermore, the use of CBOR-based serialization and object security significantly reduces
the overhead, making it well-suited for resource-constrained environments. Extensive
testing confirmed the robustness of cBRSKI-PRM against attack vectors, while also vali-
dating its usability in real-world enterprise scenarios. By addressing both technical and
operational challenges, this thesis contributes to the advancement of secure IoT device
management and provides a solid foundation for future research in this area.

Future work could explore further optimization of BLE communication efficiency, integra-
tion with other protocols, and broader testing in diverse deployment scenarios. Extending
the protocol to support additional device classes and use cases could further enhance its
applicability. By contributing to the field of secure IoT device management, this thesis
lays the groundwork for advancing secure and scalable solutions tailored to the unique
challenges of constrained devices. The findings reinforce the importance of innovative
approaches to address the evolving IoT security demands.

51

List of Figures

2.1 The architecture behind RFC 8995 [51]. 8

3.1 The architecture behind BRSKI-PRM [26]. 13

5.1 BRSKI-PRM’s architecture . 21
5.2 The proposed architecture of cBRSKI-PRM 25

6.1 Registrar adding its signature in-flight to a Voucher containing token . . . 33
6.2 BLE packet exchange using GATT . 35
6.3 A test environment featuring different Espressif devices 41

D.1 The Flutter Application showing the scan for devices screen 84
D.2 The Flutter Application showing a debug panel with device characteristics 85

List of Listings

6.1 Example of a JOSE signature . 30
6.2 Signed JWS object . 32
6.3 DataInterchangeFormat Enum Values . 42
6.4 Partitions as per partitions.csv . 43

A.1 Open-BRSKI Configuration File . 63
A.2 Example of a Voucher-Request encoded in JSON 63
A.3 Signing and Verifying Interface . 63
A.4 Packet Defragmentation in Write Characteristic 64
A.5 Packet Fragmentation in Read Characteristic 65
A.6 Data Frame for Fragmented Payloads . 65
A.7 Pledge Communication Interface . 65
A.8 HTTP Communication Implementation . 66
A.9 BLE FFI Communicator Structure . 67
A.10 BLE FFI Communication Implementation 68
A.11 Create FFI Bridge using Dart . 68
A.12 PledgeInfo Structure . 69
A.13 Configuration using sdkconfig.defaults . 69
A.14 Setting up the async Runtime . 69
A.15 ESP32 Main Task . 70
A.16 Resetting the Watchdog Timer . 70

C.1 MASA issued Pledge EE Certificate (IdevID) 73
C.2 Registrar-Agent EE certificate . 74

53

C.3 Registrar Certificate Authority certificate . 75
C.4 Registrar EE certificate . 77
C.5 MASA CA certificate . 78
C.6 MASA EE certificate.txt . 80

List of Tables

6.1 MASA Service Endpoints . 28
6.2 Registrar Service Endpoints . 28
6.3 Registrar-Agent Service Endpoints . 29
6.4 Simulated Pledge Service Endpoints . 29
6.5 BRSKI-PRM Artifact Sizes with JSON/JOSE and CBOR/COSE 31
6.6 UUIDs mapped to BRSKI-PRM REST routes 34

B.1 UUIDs mapped to BRSKI-PRM REST routes 71

54

Bibliography

[1] H. Aldowah, S. Rehman, and I. Umar. “Security in Internet of Things: Issues,
Challenges, and Solutions”. In: July 2019. isbn: 978-3-319-99006-4. doi: 10.1007/
978-3-319-99007-1_38.

[2] R. Barnes, J. Hoffman-Andrews, D. McCarney, and J. Kasten. Automatic Certificate
Management Environment (ACME). RFC 8555. RFC Editor, Mar. 2019. doi: 10.17487/
RFC8555. url: https://www.rfc-editor.org/info/rfc8555.

[3] C. Bormann and P. E. Hoffman. Concise Binary Object Representation (CBOR). RFC
8949. RFC Editor, Dec. 2020. doi: 10.17487/RFC8949. url: https://www.rfc-
editor.org/info/rfc8949.

[4] C. Bormann and Z. Shelby. Block-Wise Transfers in the Constrained Application Pro-
tocol (CoAP). RFC 7959. RFC Editor, Aug. 2016. doi: 10 . 17487 / RFC7959. url:
https://www.rfc-editor.org/info/rfc7959.

[5] P. V. der Stok, P. Kampanakis, M. Richardson, and S. Raza. EST-coaps: Enrollment
over Secure Transport with the Secure Constrained Application Protocol. RFC 9148.
RFC Editor, Apr. 2022. doi: 10.17487/RFC9148. url: https://www.rfc-editor.
org/info/rfc9148.

[6] D. Drysdale and P. Crowley. Google/Coset: A Set of Rust Types for Supporting COSE.
Version 0.3.8. Google, July 24, 2024. url: https://github.com/google/coset
(visited on 09/20/2024).

[7] V. Dukhovni. Opportunistic Security: Some Protection Most of the Time. RFC 7435.
RFC Editor, Dec. 2014. doi: 10.17487/RFC7435. url: https://www.rfc-editor.
org/info/rfc7435.

[8] Espressif. Burn Efuse - ESP32 - — Esptool.Py Latest Documentation. June 18, 2024.
url: https://docs.espressif.com/projects/esptool/en/latest/esp32/
espefuse/burn-efuse-cmd.html (visited on 01/05/2025).

[9] Espressif. Chip Series Comparison - ESP32 - — ESP-IDF Programming Guide v5.0.7
Documentation. May 7, 2022. url: https://docs.espressif.com/projects/esp-
idf/en/v5.0.7/esp32/hw-reference/chip-series-comparison.html (visited
on 12/26/2024).

[10] Espressif. Configure Other JTAG Interfaces - ESP32-S3 - — ESP-IDF Programming
Guide v5.4 Documentation. Sept. 18, 2024. url: https://docs.espressif.com/
projects / esp - idf / en / stable / esp32s3 / api - guides / jtag - debugging /
configure-other-jtag.html (visited on 01/05/2025).

[11] Espressif. eFuse Manager - ESP32 - — ESP-IDF Programming Guide v5.4 Documenta-
tion. Aug. 19, 2024. url: https://docs.espressif.com/projects/esp-idf/en/
stable/esp32/api-reference/system/efuse.html (visited on 01/05/2025).

55

https://doi.org/10.1007/978-3-319-99007-1_38
https://doi.org/10.1007/978-3-319-99007-1_38
https://doi.org/10.17487/RFC8555
https://doi.org/10.17487/RFC8555
https://www.rfc-editor.org/info/rfc8555
https://doi.org/10.17487/RFC8949
https://www.rfc-editor.org/info/rfc8949
https://www.rfc-editor.org/info/rfc8949
https://doi.org/10.17487/RFC7959
https://www.rfc-editor.org/info/rfc7959
https://doi.org/10.17487/RFC9148
https://www.rfc-editor.org/info/rfc9148
https://www.rfc-editor.org/info/rfc9148
https://github.com/google/coset
https://doi.org/10.17487/RFC7435
https://www.rfc-editor.org/info/rfc7435
https://www.rfc-editor.org/info/rfc7435
https://docs.espressif.com/projects/esptool/en/latest/esp32/espefuse/burn-efuse-cmd.html
https://docs.espressif.com/projects/esptool/en/latest/esp32/espefuse/burn-efuse-cmd.html
https://docs.espressif.com/projects/esp-idf/en/v5.0.7/esp32/hw-reference/chip-series-comparison.html
https://docs.espressif.com/projects/esp-idf/en/v5.0.7/esp32/hw-reference/chip-series-comparison.html
https://docs.espressif.com/projects/esp-idf/en/stable/esp32s3/api-guides/jtag-debugging/configure-other-jtag.html
https://docs.espressif.com/projects/esp-idf/en/stable/esp32s3/api-guides/jtag-debugging/configure-other-jtag.html
https://docs.espressif.com/projects/esp-idf/en/stable/esp32s3/api-guides/jtag-debugging/configure-other-jtag.html
https://docs.espressif.com/projects/esp-idf/en/stable/esp32/api-reference/system/efuse.html
https://docs.espressif.com/projects/esp-idf/en/stable/esp32/api-reference/system/efuse.html

Bibliography

[12] Espressif. Esp-Rs. Feb. 9, 2023. url: https://github.com/esp- rs (visited on
01/16/2025).

[13] Espressif. Esp-Rs/Esp-Hal. esp-rs, Jan. 16, 2025. url: https://github.com/esp-
rs/esp-hal (visited on 01/16/2025).

[14] Espressif. Esp-Rs/Esp-Idf-Svc: Type-Safe Rust Wrappers for Various ESP-IDF Services
(WiFi, Network, Httpd, Logging, Etc.) Version 0.51.0. Jan. 16, 2025. url: https :
//github.com/esp-rs/esp-idf-svc (visited on 01/16/2025).

[15] Espressif. Esp-Rs/Esp-Idf-Sys. esp-rs, Jan. 16, 2025. url: https://github.com/esp-
rs/esp-idf-sys (visited on 01/16/2025).

[16] Espressif. ESP32-C3-DevKitM-1 - ESP32-C3 - — ESP-IDF Programming Guide v5.2
Documentation. Sept. 5, 2023. url: https://docs.espressif.com/projects/esp-
idf/en/v5.2/esp32c3/hw-reference/esp32c3/user-guide-devkitm-1.html
(visited on 12/26/2024).

[17] Espressif. ESP32-C6-DevKitM-1 - ESP32-C6 - — Esp-Dev-Kits Latest Documenta-
tion. Dec. 11, 2024. url: https://docs.espressif.com/projects/esp- dev-
kits/en/latest/esp32c6/esp32-c6-devkitm-1/user_guide.html (visited on
12/26/2024).

[18] Espressif. ESP32-S3-DevKitC-1 v1.1 - ESP32-S3 - — Esp-Dev-Kits Latest Documen-
tation. Dec. 11, 2024. url: https://docs.espressif.com/projects/esp-dev-
kits/en/latest/esp32s3/esp32-s3-devkitc-1/user_guide.html (visited on
12/26/2024).

[19] Espressif. Introduction to the ESP-Prog Board - - — ESP-IoT-Solution Latest Docu-
mentation. Sept. 11, 2024. url: https://docs.espressif.com/projects/esp-
iot- solution/en/latest/hw- reference/ESP- Prog_guide.html (visited on
12/26/2024).

[20] Espressif. Project Configuration - ESP32-C3 - — ESP-IDF Programming Guide v5.3.2
Documentation. Sept. 3, 2024. url: https://docs.espressif.com/projects/esp-
idf/en/stable/esp32c3/api-reference/kconfig.html?highlight=ble_ext_
adv#config-bt-nimble-ext-adv (visited on 12/26/2024).

[21] Espressif. Security - ESP32-C3 - — ESP-IDF Programming Guide v5.4 Documentation.
Jan. 4, 2025. url: https://docs.espressif.com/projects/esp-idf/en/stable/
esp32c3/security/security.html (visited on 01/05/2025).

[22] S. Fackler. Sfackler/Rust-Openssl. Jan. 2, 2025. url: https://github.com/sfackler/
rust-openssl (visited on 01/05/2025).

[23] E. F. Foundation. Certbot/Certbot. Certbot, Jan. 5, 2025. url: https://github.com/
certbot/certbot (visited on 01/05/2025).

[24] O. Foundation. OpenSSL. Version 3.4.0. Oct. 22, 2024. url: https://openssl.org/
(visited on 01/05/2025).

[25] R. Foundation. Rust Programming Language. Jan. 12. url: https://www.rust-
lang.org/ (visited on 12/16/2024).

56

https://github.com/esp-rs
https://github.com/esp-rs/esp-hal
https://github.com/esp-rs/esp-hal
https://github.com/esp-rs/esp-idf-svc
https://github.com/esp-rs/esp-idf-svc
https://github.com/esp-rs/esp-idf-sys
https://github.com/esp-rs/esp-idf-sys
https://docs.espressif.com/projects/esp-idf/en/v5.2/esp32c3/hw-reference/esp32c3/user-guide-devkitm-1.html
https://docs.espressif.com/projects/esp-idf/en/v5.2/esp32c3/hw-reference/esp32c3/user-guide-devkitm-1.html
https://docs.espressif.com/projects/esp-dev-kits/en/latest/esp32c6/esp32-c6-devkitm-1/user_guide.html
https://docs.espressif.com/projects/esp-dev-kits/en/latest/esp32c6/esp32-c6-devkitm-1/user_guide.html
https://docs.espressif.com/projects/esp-dev-kits/en/latest/esp32s3/esp32-s3-devkitc-1/user_guide.html
https://docs.espressif.com/projects/esp-dev-kits/en/latest/esp32s3/esp32-s3-devkitc-1/user_guide.html
https://docs.espressif.com/projects/esp-iot-solution/en/latest/hw-reference/ESP-Prog_guide.html
https://docs.espressif.com/projects/esp-iot-solution/en/latest/hw-reference/ESP-Prog_guide.html
https://docs.espressif.com/projects/esp-idf/en/stable/esp32c3/api-reference/kconfig.html?highlight=ble_ext_adv#config-bt-nimble-ext-adv
https://docs.espressif.com/projects/esp-idf/en/stable/esp32c3/api-reference/kconfig.html?highlight=ble_ext_adv#config-bt-nimble-ext-adv
https://docs.espressif.com/projects/esp-idf/en/stable/esp32c3/api-reference/kconfig.html?highlight=ble_ext_adv#config-bt-nimble-ext-adv
https://docs.espressif.com/projects/esp-idf/en/stable/esp32c3/security/security.html
https://docs.espressif.com/projects/esp-idf/en/stable/esp32c3/security/security.html
https://github.com/sfackler/rust-openssl
https://github.com/sfackler/rust-openssl
https://github.com/certbot/certbot
https://github.com/certbot/certbot
https://openssl.org/
https://www.rust-lang.org/
https://www.rust-lang.org/

[26] S. Fries, T. Werner, E. Lear, and M. Richardson. BRSKI with Pledge in Responder Mode
(BRSKI-PRM). Internet-Draft draft-ietf-anima-brski-prm-15. Internet Engineering
Task Force / Internet Engineering Task Force, Aug. 26, 2024. 113 pp. url: https:
//datatracker.ietf.org/doc/draft-ietf-anima-brski-prm/15/.

[27] fzyzcjy. Fzyzcjy/Flutter_rust_bridge: Flutter/Dart <-> Rust Binding Generator, Feature-
Rich, but Seamless and Simple. url: https://github.com/fzyzcjy/flutter_rust_
bridge (visited on 01/15/2025).

[28] Google LLC. Bluetooth Low Energy Advertising. Android Open Source Project.
Dec. 12, 2024. url: https : / / source . android . com / docs / core / connect /
bluetooth/ble_advertising (visited on 12/26/2024).

[29] Google LLC. Gatt.Py - Android Code Search. May 17, 2022. url: https :
/ / cs . android . com / android / platform / superproject / main / + /
main : external / python / bumble / bumble / gatt . py ; l = 63 ; drc =
f06a35713f6db739e3c53738eda25598efcd47f4 (visited on 12/26/2024).

[30] B. S. I. Group. Bluetooth Core Specification Version 6.0 Vol. 3. Bluetooth Special In-
terest Group, Aug. 27, 2024. url: https://www.bluetooth.com/specifications/
bluetooth-core-specification/.

[31] M. El-Hajj, A. Fadlallah, M. Chamoun, and A. Serhrouchni. “Ethereum for Secure
Authentication of IoT Using Pre-Shared Keys (Psks)”. In: 2019 International Con-
ference on Wireless Networks and Mobile Communications (WINCOM). 2019. doi:
10.1109/WINCOM47513.2019.8942487.

[32] R. Housley. Cryptographic Message Syntax (CMS). RFC 5652. RFC Editor, Sept. 2009.
doi: 10.17487/RFC5652. url: https://www.rfc-editor.org/info/rfc5652.

[33] H. Izuno. Hidekatsu-Izuno/Josekit-Rs. Dec. 20, 2024. url: https://github.com/
hidekatsu-izuno/josekit-rs (visited on 12/26/2024).

[34] M. B. Jones, J. Bradley, and N. Sakimura. JSON Web Signature (JWS). RFC 7515. RFC
Editor, May 2015. doi: 10.17487/RFC7515. url: https://www.rfc-editor.org/
info/rfc7515.

[35] S. Josefsson. The Base16, Base32, and Base64 Data Encodings. RFC 4648. RFC Editor,
Oct. 2006. doi: 10.17487/RFC4648. url: https://www.rfc-editor.org/info/
rfc4648.

[36] S. Klabnik. “The History of Rust”. In: Applicative 2016 on - Applicative 2016. Ap-
plicative 2016. New York, NY, USA: ACM Press, 2016. isbn: 978-1-4503-4464-7.
doi: 10.1145/2959689.2960081. url: http://dl.acm.org/citation.cfm?doid=
2959689.2960081 (visited on 12/16/2024).

[37] F. Kohnhäuser, N. Büscher, and S. Katzenbeisser. “A Practical Attestation Proto-
col for Autonomous Embedded Systems”. In: 2019 IEEE European Symposium on
Security and Privacy (EuroS&P). 2019 IEEE European Symposium on Security and
Privacy (EuroS&P). June 2019. doi: 10.1109/EuroSP.2019.00028. url: https:
//ieeexplore.ieee.org/abstract/document/8806746 (visited on 12/07/2023).

57

https://datatracker.ietf.org/doc/draft-ietf-anima-brski-prm/15/
https://datatracker.ietf.org/doc/draft-ietf-anima-brski-prm/15/
https://github.com/fzyzcjy/flutter_rust_bridge
https://github.com/fzyzcjy/flutter_rust_bridge
https://source.android.com/docs/core/connect/bluetooth/ble_advertising
https://source.android.com/docs/core/connect/bluetooth/ble_advertising
https://cs.android.com/android/platform/superproject/main/+/main:external/python/bumble/bumble/gatt.py;l=63;drc=f06a35713f6db739e3c53738eda25598efcd47f4
https://cs.android.com/android/platform/superproject/main/+/main:external/python/bumble/bumble/gatt.py;l=63;drc=f06a35713f6db739e3c53738eda25598efcd47f4
https://cs.android.com/android/platform/superproject/main/+/main:external/python/bumble/bumble/gatt.py;l=63;drc=f06a35713f6db739e3c53738eda25598efcd47f4
https://cs.android.com/android/platform/superproject/main/+/main:external/python/bumble/bumble/gatt.py;l=63;drc=f06a35713f6db739e3c53738eda25598efcd47f4
https://www.bluetooth.com/specifications/bluetooth-core-specification/
https://www.bluetooth.com/specifications/bluetooth-core-specification/
https://doi.org/10.1109/WINCOM47513.2019.8942487
https://doi.org/10.17487/RFC5652
https://www.rfc-editor.org/info/rfc5652
https://github.com/hidekatsu-izuno/josekit-rs
https://github.com/hidekatsu-izuno/josekit-rs
https://doi.org/10.17487/RFC7515
https://www.rfc-editor.org/info/rfc7515
https://www.rfc-editor.org/info/rfc7515
https://doi.org/10.17487/RFC4648
https://www.rfc-editor.org/info/rfc4648
https://www.rfc-editor.org/info/rfc4648
https://doi.org/10.1145/2959689.2960081
http://dl.acm.org/citation.cfm?doid=2959689.2960081
http://dl.acm.org/citation.cfm?doid=2959689.2960081
https://doi.org/10.1109/EuroSP.2019.00028
https://ieeexplore.ieee.org/abstract/document/8806746
https://ieeexplore.ieee.org/abstract/document/8806746

Bibliography

[38] J. Krieger. Hm-Seclab/Open-Brski. Version 0.0.1. SecLab Munich, Oct. 24, 2024. url:
https://github.com/hm-seclab/open-brski (visited on 12/17/2024).

[39] A. Langley, M. Hamburg, and S. Turner. Elliptic Curves for Security. RFC 7748. RFC
Editor, Jan. 2016. doi: 10.17487/RFC7748. url: https://www.rfc-editor.org/
info/rfc7748.

[40] C. Lerche. Tokio-Rs/Tokio. Tokio, Jan. 5, 2025. url: https://github.com/tokio-
rs/tokio (visited on 01/05/2025).

[41] C. Lerche, T. de Zeeuw, and tokio-rs. Mio. Lib.rs. Aug. 12, 2024. url: https://lib.
rs/crates/mio (visited on 09/20/2024).

[42] Y. Liu, J. Wang, J. Li, S. Niu, and H. Song. Machine Learning for the Detection and
Identification of Internet of Things (IoT) Devices: A Survey. Jan. 25, 2021. doi: 10.
48550/arXiv.2101.10181. arXiv: 2101.10181 [cs]. url: http://arxiv.org/abs/
2101.10181 (visited on 01/05/2025). Pre-published.

[43] L. Lundblade, G. Mandyam, J. O’Donoghue, and C. Wallace. The Entity Attestation
Token (EAT). Internet Draft draft-ietf-rats-eat-25. Internet Engineering Task Force,
Jan. 15, 2024. 101 pp. url: https://datatracker.ietf.org/doc/draft-ietf-
rats-eat (visited on 02/05/2024).

[44] J. P. Mattsson, G. Selander, S. Raza, J. Höglund, and M. Furuhed. CBOR Encoded
X.509 Certificates (C509 Certificates). Internet-Draft draft-ietf-cose-cbor-encoded-
cert-11. Internet Engineering Task Force / Internet Engineering Task Force, July 8,
2024. 73 pp. url: https://datatracker.ietf.org/doc/draft-ietf-cose-cbor-
encoded-cert/11/.

[45] S. McArthur. Seanmonstar/Reqwest. Jan. 5, 2025. url: https : / / github . com /
seanmonstar/reqwest (visited on 01/05/2025).

[46] N. McCallum and L. Mammino. Enarx/Ciborium. Enarx, Jan. 2, 2025. url: https:
//github.com/enarx/ciborium (visited on 01/05/2025).

[47] Y. Nir, S. Josefsson, and M. Pégourié-Gonnard. Elliptic Curve Cryptography (ECC)
Cipher Suites for Transport Layer Security (TLS) Versions 1.2 and Earlier. RFC 8422.
RFC Editor, Aug. 2018. doi: 10.17487/RFC8422. url: https://www.rfc-editor.
org/info/rfc8422.

[48] M. ooley. Exploring Bluetooth 5 -What’s New in Advertising? Bluetooth® Technology
Website. Feb. 27, 2017. url: https://www.bluetooth.com/blog/exploring-
bluetooth5-whats-new-in-advertising/ (visited on 12/17/2024).

[49] R. Organization. Rust Crypto. Apr. 1, 2020. url: https://github.com/RustCrypto
(visited on 01/05/2025).

[50] R. Prakash, J. Neeli, and S. Manjunatha. “A Survey of Security Challenges, At-
tacks in IoT”. In: E3S Web of Conferences (Feb. 21, 2024). doi: 10.1051/e3sconf/
202449104018.

58

https://github.com/hm-seclab/open-brski
https://doi.org/10.17487/RFC7748
https://www.rfc-editor.org/info/rfc7748
https://www.rfc-editor.org/info/rfc7748
https://github.com/tokio-rs/tokio
https://github.com/tokio-rs/tokio
https://lib.rs/crates/mio
https://lib.rs/crates/mio
https://doi.org/10.48550/arXiv.2101.10181
https://doi.org/10.48550/arXiv.2101.10181
https://arxiv.org/abs/2101.10181
http://arxiv.org/abs/2101.10181
http://arxiv.org/abs/2101.10181
https://datatracker.ietf.org/doc/draft-ietf-rats-eat
https://datatracker.ietf.org/doc/draft-ietf-rats-eat
https://datatracker.ietf.org/doc/draft-ietf-cose-cbor-encoded-cert/11/
https://datatracker.ietf.org/doc/draft-ietf-cose-cbor-encoded-cert/11/
https://github.com/seanmonstar/reqwest
https://github.com/seanmonstar/reqwest
https://github.com/enarx/ciborium
https://github.com/enarx/ciborium
https://doi.org/10.17487/RFC8422
https://www.rfc-editor.org/info/rfc8422
https://www.rfc-editor.org/info/rfc8422
https://www.bluetooth.com/blog/exploring-bluetooth5-whats-new-in-advertising/
https://www.bluetooth.com/blog/exploring-bluetooth5-whats-new-in-advertising/
https://github.com/RustCrypto
https://doi.org/10.1051/e3sconf/202449104018
https://doi.org/10.1051/e3sconf/202449104018

[51] M. Pritikin, M. Richardson, T. Eckert, M. H. Behringer, and K. Watsen. Bootstrapping
Remote Secure Key Infrastructure (BRSKI). RFC 8995. RFC Editor, May 2021. doi:
10.17487/RFC8995. url: https://www.rfc-editor.org/info/rfc8995.

[52] M. Pritikin, P. E. Yee, and D. Harkins. Enrollment over Secure Transport. RFC 7030.
RFC Editor, Oct. 2013. doi: 10.17487/RFC7030. url: https://www.rfc-editor.
org/info/rfc7030.

[53] V. V. Rao, R. Marshal, and K. Gobinath. “The IoT Supply Chain Attack Trends-
Vulnerabilities and Preventive Measures”. In: 2021 4th International Conference
on Security and Privacy (ISEA-ISAP). 2021. doi: 10.1109/ISEA-ISAP54304.2021.
9689704.

[54] A. Rebert and C. Kern. Secure by Design: Google’s Perspective on Memory Safety.
Google Security Engineering, 2024.

[55] M. Richardson, P. V. der Stok, P. Kampanakis, and E. Dijk. Constrained Bootstrap-
ping Remote Secure Key Infrastructure (cBRSKI). Internet-Draft draft-ietf-anima-
constrained-voucher-25. Internet Engineering Task Force / Internet Engineering
Task Force, July 8, 2024. 88 pp. url: https://datatracker.ietf.org/doc/draft-
ietf-anima-constrained-voucher/25/.

[56] Rust Foundation. Crates.Io: Rust Package Registry. June 25, 2024. url: https://
crates.io/ (visited on 12/19/2024).

[57] T. Sasi, A. H. Lashkari, R. Lu, P. Xiong, and S. Iqbal. “A Comprehensive Survey
on IoT Attacks: Taxonomy, Detection Mechanisms and Challenges”. In: Journal of
Information and Intelligence 6 (2024). issn: 2949-7159. doi: 10.1016/j.jiixd.2023.
12.001.

[58] J. Schaad. CBOR Object Signing and Encryption (COSE). RFC 8152. RFC Editor, July
2017. doi: 10.17487/RFC8152. url: https://www.rfc-editor.org/info/rfc8152.

[59] J. Schaad. CBOR Object Signing and Encryption (COSE): Initial Algorithms. RFC
9053. RFC Editor, Aug. 2022. doi: 10.17487/RFC9053. url: https://www.rfc-
editor.org/info/rfc9053.

[60] J. Schaad. CBOR Object Signing and Encryption (COSE): Structures and Process. RFC
9052. RFC Editor, Aug. 2022. doi: 10.17487/RFC9052. url: https://www.rfc-
editor.org/info/rfc9052.

[61] Z. Shelby, K. Hartke, and C. Bormann. The Constrained Application Protocol (CoAP).
RFC 7252. RFC Editor, June 2014. doi: 10.17487/RFC7252. url: https://www.rfc-
editor.org/info/rfc7252.

[62] M. Singh and M. Ranganathan. Formal Verification of Bootstrapping Remote Secure
Key Infrastructures (BRSKI) Protocol Using AVISPA. National Institute of Stan-
dards and Technology, Oct. 7, 2020. doi: 10.6028/NIST.TN.2123. url: https:
//nvlpubs.nist.gov/nistpubs/TechnicalNotes/NIST.TN.2123.pdf (visited on
01/07/2024).

59

https://doi.org/10.17487/RFC8995
https://www.rfc-editor.org/info/rfc8995
https://doi.org/10.17487/RFC7030
https://www.rfc-editor.org/info/rfc7030
https://www.rfc-editor.org/info/rfc7030
https://doi.org/10.1109/ISEA-ISAP54304.2021.9689704
https://doi.org/10.1109/ISEA-ISAP54304.2021.9689704
https://datatracker.ietf.org/doc/draft-ietf-anima-constrained-voucher/25/
https://datatracker.ietf.org/doc/draft-ietf-anima-constrained-voucher/25/
https://crates.io/
https://crates.io/
https://doi.org/10.1016/j.jiixd.2023.12.001
https://doi.org/10.1016/j.jiixd.2023.12.001
https://doi.org/10.17487/RFC8152
https://www.rfc-editor.org/info/rfc8152
https://doi.org/10.17487/RFC9053
https://www.rfc-editor.org/info/rfc9053
https://www.rfc-editor.org/info/rfc9053
https://doi.org/10.17487/RFC9052
https://www.rfc-editor.org/info/rfc9052
https://www.rfc-editor.org/info/rfc9052
https://doi.org/10.17487/RFC7252
https://www.rfc-editor.org/info/rfc7252
https://www.rfc-editor.org/info/rfc7252
https://doi.org/10.6028/NIST.TN.2123
https://nvlpubs.nist.gov/nistpubs/TechnicalNotes/NIST.TN.2123.pdf
https://nvlpubs.nist.gov/nistpubs/TechnicalNotes/NIST.TN.2123.pdf

Bibliography

[63] S. Sinha. State of IoT 2023: Number of Connected IoT Devices Growing 16% to 16.7
Billion Globally. IoT Analytics. May 24, 2023. url: https://iot-analytics.com/
number-connected-iot-devices/ (visited on 01/28/2024).

[64] B. Smith. Briansmith/Ring. Oct. 15, 2024. url: https://github.com/briansmith/
ring (visited on 10/16/2024).

[65] F. Stajano and R. Anderson. “The Resurrecting Duckling: Security Issues for Ad-
hoc Wireless Networks”. In: Security Protocols. Ed. by B. Christianson, B. Crispo,
J. A. Malcolm, and M. Roe. Lecture Notes in Computer Science. Berlin, Heidelberg:
Springer, 2000. isbn: 978-3-540-45570-7. doi: 10.1007/10720107_24.

[66] M. StJohns. Attestation Attributes for Use with Certification Signing Requests. Internet
Draft draft-stjohns-csr-attest-02. Internet Engineering Task Force, June 7, 2023.
17 pp. url: https://datatracker.ietf.org/doc/draft-stjohns-csr-attest
(visited on 02/05/2024).

[67] Supply Chain Compromise, Technique T1195 - Enterprise | MITRE ATT&CK®.
Apr. 18, 2018. url: https://attack.mitre.org/techniques/T1195/ (visited
on 01/28/2024).

[68] S. Symington, W. Polk, and M. Souppaya. Trusted Internet of Things (IoT) Device
Network-Layer Onboarding and Lifecycle Management. Whitepaper. NIST, Sept. 8,
2020. url: https://nvlpubs.nist.gov/nistpubs/CSWP/NIST.CSWP.09082020-
draft.pdf (visited on 01/03/2025).

[69] R. S. Team. 2023 Annual Rust Survey Results | Rust Blog. Feb. 19, 2024. url: https:
//blog.rust-lang.org/2024/02/19/2023-Rust-Annual-Survey-2023-results.
html (visited on 12/16/2024).

[70] Tony Arcieri, Nathaniel McCallum, and Trevor Gross. RustCrypto/JOSE. Rust
Crypto, Nov. 5, 2024. url: https://github.com/RustCrypto/JOSE (visited on
12/19/2024).

[71] L. S. Vailshery. IoT Connected Devices Worldwide 2019-2030. Statista. July 27, 2023.
url: https : / / www . statista . com / statistics / 1183457 / iot - connected -
devices-worldwide/ (visited on 01/28/2024).

[72] C. Wallace and S. Turner. Key Attestation Extension for Certificate Management Pro-
tocols. Internet Draft draft-ietf-lamps-key-attestation-ext-00. Internet Engineering
Task Force, Oct. 17, 2022. 14 pp. url: https://datatracker.ietf.org/doc/draft-
ietf-lamps-key-attestation-ext (visited on 02/05/2024).

[73] K. Watsen, M. Richardson, M. Pritikin, T. Eckert, and Q. Ma. A Voucher Artifact
for Bootstrapping Protocols. Internet-Draft draft-ietf-anima-rfc8366bis-12. Internet
Engineering Task Force / Internet Engineering Task Force, July 8, 2024. 43 pp. url:
https://datatracker.ietf.org/doc/draft-ietf-anima-rfc8366bis/12/.

[74] M. H. Zoualfaghari and A. Reeves. “Secure & Zero Touch Device Onboarding”. In:
Living in the Internet of Things (IoT 2019). Jan. 2, 2019. doi: 10.1049/cp.2019.0133.

60

https://iot-analytics.com/number-connected-iot-devices/
https://iot-analytics.com/number-connected-iot-devices/
https://github.com/briansmith/ring
https://github.com/briansmith/ring
https://doi.org/10.1007/10720107_24
https://datatracker.ietf.org/doc/draft-stjohns-csr-attest
https://attack.mitre.org/techniques/T1195/
https://nvlpubs.nist.gov/nistpubs/CSWP/NIST.CSWP.09082020-draft.pdf
https://nvlpubs.nist.gov/nistpubs/CSWP/NIST.CSWP.09082020-draft.pdf
https://blog.rust-lang.org/2024/02/19/2023-Rust-Annual-Survey-2023-results.html
https://blog.rust-lang.org/2024/02/19/2023-Rust-Annual-Survey-2023-results.html
https://blog.rust-lang.org/2024/02/19/2023-Rust-Annual-Survey-2023-results.html
https://github.com/RustCrypto/JOSE
https://www.statista.com/statistics/1183457/iot-connected-devices-worldwide/
https://www.statista.com/statistics/1183457/iot-connected-devices-worldwide/
https://datatracker.ietf.org/doc/draft-ietf-lamps-key-attestation-ext
https://datatracker.ietf.org/doc/draft-ietf-lamps-key-attestation-ext
https://datatracker.ietf.org/doc/draft-ietf-anima-rfc8366bis/12/
https://doi.org/10.1049/cp.2019.0133

Glossary

ACME Automatic Certificate Management Environment.

BLE Bluetooth Low Energy.
BRSKI Bootstrapping Remote Secure Key Infrastructure.
BRSKI-PRM Bootstrapping Remote Secure Key Infrastructure with Pledge in Responder

Mode.

CA Certificate Authority.
CBOR Concise Binary Object Representation.
cBRSKI Constrained Bootstrapping Remote Secure Key Infrastructure.
cBRSKI-PRM Constrained Bootstrapping Remote Secure Key Infrastructure with Pledge

in Responder Mode.
CMS Cryptographic Message Syntax.
CoAP Constrained Application Protocol.
COSE CBOR Object Signing and Encryption.
CSR Certificate Signing Request.

DHCP Dynamic Host Configuration Protocol.
DNS-SD DNS Service Discovery.

ECC Elliptic Curve Cryptography.
EDCC European Dependable Computing Conference.
EST Enrollment over Secure Transport.

GATT Generic Attribute Profile.

HTTP Hypertext Transfer Protocol.

IoT Internet-of-Things.
IP Internet Protocol.

JOSE JavaScript Object Signing and Encryption.
JSON JavaScript Object Notation.
JWS JSON Web Signature.

MASA Manufacturer Authorized Signing Authority.

RAM Random Access Memory.
ROM Read-Only Memory.
RVR Registrar Voucher Request.

TLS Transport Layer Security.
TOFU Trust On First Use.

61

A Listings

1 mode = "PRM" # unspecified "other" mode not implemented
2

3 [masa]
4 ca_certificate = "vendor -ca.cert"
5 ca_key = "vendor -ca.key"
6 masa_certificate = " vendor .cert"
7 masa_key = " vendor .key"
8 registrar_ee_certificate = " registrar .cert"
9 masa_url = "http :// localhost :3000"

10

11 [registrar]
12 ca_certificate = "registrar -ca.cert"
13 ca_key = "registrar -ca.key"
14 registrar_certificate = " registrar .cert"
15 registrar_key = " registrar .key"
16 reg_agt_ee_cert = "registrar -agent.cert"
17

18 [registrar_agent]
19 ee_certificate = "registrar -agent.cert"
20 ee_key = "registrar -agent.key"
21 registrar_certificate = "registrar -ca.cert"
22 registrar_url = "http :// localhost :3001"
23 bootstrap_serials = ["00 -D0 -E5 -F2 -00 -02"]
24

25 [pledge]
26 idevid_certificate = " pledge .cert"
27 idevid_privkey = " pledge .key"
28 idev_id = "00-D0 -E5 -F2 -00 -02"

Listing A.1: Open-BRSKI Configuration File

1 {
2 "ietf -voucher - request : voucher ": {
3 "created -on ": "2021 -04 -16 T00 :00:02.000 Z",
4 "nonce ": "eDs ++/ FuDHGUnRxN3E14CQ ==",
5 "serial - number ": "vendor - pledge4711 ",
6 " assertion ": "agent - proximity ",
7 "agent -provided -proximity -registrar -cert ": "b64 ==",
8 "agent -signed -data ": "b64 =="
9 }

10 }

Listing A.2: Example of a Voucher-Request encoded in JSON

1 pub trait SignerVerifyer <T> {
2 fn sign(
3 &self ,
4 payload : T,
5 header : HeaderSet ,

63

A Listings

6 privkey : &[u8],
7) -> Result <Vec <u8 >, SigneableError >;
8

9 fn verify (
10 &self ,
11 signed_data : &[u8],
12) -> Result < VerifyResult <T>, SigneableError >;
13

14 fn add_signature (
15 &self ,
16 signed_data : &[u8],
17 header : HeaderSet ,
18 privkey : &[u8],
19) -> Result <Vec <u8 >, SigneableError >;
20 }
21

22 pub struct BasicSigningContext {
23 skid: Option <String >,
24 algorithm : Algorithm ,
25 }
26

27 pub struct BasicVeryingContext {
28 pub pub_key : Option <Vec <u8 >>,
29 }
30

31 pub struct VerifyResult <T> {
32 pub(crate) payload : T,
33 pub(crate) headers : HeaderSet ,
34 }

Listing A.3: Signing and Verifying Interface

1

2 let received_data = args. recv_data () // (1)
3 let deserialized : DataFrame = ... // (2)
4

5 let target_len = deserialized . header . length ; // (3)
6 let offset = deserialized . header . offset ; // (4)
7

8 write_buf . insert (offset , deserialized); // (5)
9

10 if write_buf .len () == target_len {
11 write_buf_ref . sort_by (|a, b|{
12 a. header . offset .cmp (&b. header . offset) // (6)
13 });
14 let arr = write_buf .iter (); // (7)
15 let payload = arr.iter (). fold(vec! [], |mut acc , df| {
16 acc. extend_from_slice (&df.data); // (8)
17 acc
18 });
19

20 write_buf .clear (); // (9)
21

22 let result : Response = route_handler (payload); // (10)

64

23

24 let computed_buf_ptr =
25 &mut computed_buf .lock (); // (11)
26 computed_buf_ptr .clear ();
27 computed_buf_ptr . extend_from_slice (
28 & result .data ()
29); // (12)
30 }

Listing A.4: Packet Defragmentation in Write Characteristic

1

2 let computed_buf_ptr = computed_buf_ptr_copy .lock () // (1);
3 let ident = _args. address (). val ()[0] // (2);
4 let frames =
5 DataFrame :: split_from_vec (
6 computed_buf_ptr , ident
7); // (3)
8

9 let mut buf = [0 u8; EXPECTED_DATA_SIZE]; // (4)
10 for frame in frames {
11 buf.clear ();
12 serialize_func (& frame , &mut buf); // (5)
13 _this. set_value (& buf); // (6)
14 }

Listing A.5: Packet Fragmentation in Read Characteristic

1

2 const BTLE_MAX_PACKET_SIZE : usize = 512 - 3; // (0)
3

4 struct DataFrame {
5 header : DataFrameHeader // (1),
6 data: [u8; EXPECTED_DATA_SIZE] // (2),
7 }
8

9 const EXPECTED_DATA_SIZE : usize = {
10 BTLE_MAX_PACKET_SIZE
11 - std :: mem :: size_of ::< DataFrameHeader >() // (3)
12 }
13 struct DataFrameHeader {
14 offset : u8 , // (4)
15 ident: u8 , // (5)
16 length : u8 , // (6)
17 }

Listing A.6: Data Frame for Fragmented Payloads

1

2 pub trait PledgeCommunicator : Send + Sync { // (1)
3

4 async fn send_pvr_trigger (// (2)
5 &self ,
6 trigger : Vec <u8 >, // (3)

65

A Listings

7 ctx: PledgeCtx , // (4)
8) -> Result <Vec <u8 >, ServerError >; // (5)
9

10 async fn send_per_trigger (
11 &self ,
12 trigger : Vec <u8 >,
13 ctx: PledgeCtx ,
14) -> Result <Vec <u8 >, ServerError >;
15

16 async fn send_voucher (
17 &self , voucher : Vec <u8 >, ctx: PledgeCtx
18)-> Result <Vec <u8 >, ServerError >;
19

20 async fn send_ca_certs (
21 &self , cacerts : Vec <u8 >, ctx: PledgeCtx
22) -> Result <() , ServerError >;
23

24 async fn send_enroll_response (
25 &self ,
26 cacerts : Vec <u8 >,
27 ctx: PledgeCtx ,
28) -> Result <Vec <u8 >, ServerError >;
29

30 async fn get_data_interchange_format (
31 &self ,
32 pledge : DiscoveredPledge ,
33) -> Result <String , ServerError >;
34

35 async fn get_pledge_info (
36 &self ,
37 pledge : DiscoveredPledge ,
38 format : DataInterchangeFormat ,
39) -> Result <Vec <u8 >, ServerError >;
40 }
41

42

43 pub struct PledgeCtx { // (6)
44 pub ctx: String ,
45 pub pledge_serial : String ,
46 pub pledge_url : String ,
47 pub pledge_info : PledgeInfo ,
48 }

Listing A.7: Pledge Communication Interface

1

2 pub struct HTTPCommunicator { // (1)
3 client : reqwest :: Client ,
4 }
5

6 impl PledgeCommunicator for HTTPCommunicator {
7

8 async fn send_pvr_trigger (
9 &self ,

66

10 trigger : Vec <u8 >,
11 ctx: PledgeCtx ,
12) -> Result <Vec <u8 >, ServerError > {
13 let url = format! (
14 "{}/. well -known/brski/tpvr", ctx. pledge_url // (2)
15);
16

17 let response = self
18 . client
19 .post(url) // (3)
20 . header (
21 ACCEPT ,
22 ctx
23 . pledge_info
24 . supported_voucher_type
25 . as_content_type (), // (4)
26)
27 . header (
28 CONTENT_TYPE ,
29 ctx
30 . pledge_info
31 . data_interchance_format
32 . as_content_type (), // (5)
33)
34 .body(trigger) // (6)
35 .send ()
36 .await ?;
37

38 if !response . status (). is_success () {
39 return Err(ServerError :: BadResponse (format! (
40 "{},!{}",
41 " Sending !TPVR!to! Pledge ! failed ",
42 response . status ()
43)));
44 }
45

46 // ...
47

48 let response_data = response .bytes (). await ?; // (7)
49

50 std :: result :: Result ::Ok(response_data . to_vec ()) // (8)
51 }
52 }

Listing A.8: HTTP Communication Implementation

1

2 #[derive (Clone)]
3 pub struct FFIBLECommunicator {
4 ffi_send_pvr_trigger : // (1)
5 Arc < // (2)
6 Box < // (3)
7 dyn Fn(// (4)
8 Vec <u8 >, PledgeCtx

67

A Listings

9) -> DartFnFuture < // (5)
10 Vec <u8 >
11 > + Sync + Send
12 >
13 >,
14 ffi_send_per_trigger : ...
15 ffi_send_voucher : ...
16 ffi_send_ca_certs : ...
17 ffi_send_enroll_response : ...
18 ffi_get_data_interchange_format : ...
19 ffi_get_pledge_info : ...
20 }

Listing A.9: BLE FFI Communicator Structure

1

2 #[async_trait :: async_trait]
3 impl PledgeCommunicator for FFIBLECommunicator {
4 async fn send_pvr_trigger (
5 &self , trigger : Vec <u8 >, ctx: PledgeCtx
6) -> Result <Vec <u8 >, ServerError > {
7 let result =
8 (self. ffi_send_pvr_trigger)(trigger , ctx)
9 .await; // (1)

10 Ok(result)
11 }
12 // ...
13 }

Listing A.10: BLE FFI Communication Implementation

1

2 Future < Bootstrapper > getPledgeFFIBootstrapper (// (0)
3 BleRouter bleRouter // (1),
4 CharacteristicPackage cpackage // (2)
5) async {
6 var builder = await
7 FFIBLECommunicatorBuilder .init (); // (3)
8 builder = await builder .
9 setPvrFfi (callback : (trigger , ctx) =>

10 bleRouter .route(
11 cpackage .tpvr , trigger
12)); // (4)
13

14 // ...
15

16 var communicator = await builder . build (); // (5)
17

18 var config = await getParsedConfig ();
19

20 var bootstraper =
21 await Bootstrapper .init(
22 config : config , communicator : communicator
23); // (6)

68

24

25 return bootstraper ;
26 }

Listing A.11: Create FFI Bridge using Dart

1 pub struct PledgeInfo {
2 pub data_interchance_format : DataInterchangeFormat ,
3 pub supported_token_type : PlainTokenType ,
4 pub supported_voucher_type : VoucherTokenType ,
5 }
6

7 pub enum PlainTokenType {
8 JOSE ,
9 COSE ,

10 }
11

12 pub enum VoucherTokenType {
13 JWS ,
14 COSE ,
15 }

Listing A.12: PledgeInfo Structure

1 CONFIG_ESP_MAIN_TASK_STACK_SIZE =16000 # (1)
2 CONFIG_BT_NIMBLE_HOST_TASK_STACK_SIZE =16000 # (2)
3

4 ### (3) #######################
5 CONFIG_BT_ENABLED =y
6 CONFIG_BT_BLE_ENABLED =y
7 CONFIG_BT_BLUEDROID_ENABLED =n
8 CONFIG_BT_NIMBLE_ENABLED =y
9 CONFIG_BT_NIMBLE_NVS_PERSIST =y

10 CONFIG_BT_NIMBLE_EXT_ADV =y (4)
11 ################################
12

13 ### (5) #######################
14 CONFIG_BTDM_CTRL_MODE_BLE_ONLY =y
15 CONFIG_BTDM_CTRL_MODE_BR_EDR_ONLY =n
16 CONFIG_BTDM_CTRL_MODE_BTDM =n
17 ################################
18

19 ### (6) #######################
20 CONFIG_ESP_SYSTEM_PANIC_PRINT_REBOOT =n
21 CONFIG_ESP_SYSTEM_PANIC_PRINT_HALT =y
22 CONFIG_ESP_SYSTEM_USE_EH_FRAME =y

Listing A.13: Configuration using sdkconfig.defaults

1 use esp_idf_svc ::io:: vfs :: initialize_eventfd ;
2

3 fn main () {
4

5 initialize_eventfd (1). unwrap (); // (1)

69

A Listings

6

7 tokio :: runtime :: Builder :: new_current_thread () // (2)
8 . enable_all () // (3)
9 .build () // (4)

10 . unwrap ()
11 . block_on (async move {
12 run (). await; // (5)
13 });
14 }

Listing A.14: Setting up the async Runtime

1

2 async fn run () {
3 let peripherals = Peripherals :: take (); // (1)
4 let sysloop = EspSystemEventLoop :: take (); // (2)
5 let timer = EspTaskTimerService :: new (); // (3)
6 let nvs = EspDefaultNvsPartition :: take (); // (4)
7

8 let esp_wifi = EspWifi :: new(// (5)
9 peripherals .modem ,

10 sysloop .clone (),
11 Some(nvs)
12). unwrap ();
13

14 let wifi = AsyncWifi :: wrap(// (6)
15 esp_wifi ,
16 sysloop ,
17 timer
18). unwrap ();
19

20 join! (run_wifi (wifi), run_ble ()); // (7)
21

22 loop {
23 tokio :: time :: sleep(
24 tokio :: time :: Duration :: from_secs (1) // (8)
25). await ;
26 }
27 }

Listing A.15: ESP32 Main Task

1

2 loop {
3 FreeRtos :: delay_ms (1000);
4 }

Listing A.16: Resetting the Watchdog Timer

70

B Tables

Origin Function Description UUID

Native

Service 9b574847-f706-436c-bed7-fc01eb0965c1

TPVR Read 9b574847-f706-436c-bed7-fc01eb0965c2

Write 9b574847-f706-436c-bed7-fc01eb0965c3

Service bd2ccaf3-11b7-459d-b469-3b223318a49d

TPER Read bd2ccaf3-11b7-459d-b469-3b223318a49e

Write bd2ccaf3-11b7-459d-b469-3b223318a49f

Service 98daa21b-b987-4285-92fc-73089b9b45f3

SVR Read 98daa21b-b987-4285-92fc-73089b9b45f4

Write 98daa21b-b987-4285-92fc-73089b9b45f5

Service 79739f27-6baf-4f91-9b82-37e59146e15a

SCAC Read 79739f27-6baf-4f91-9b82-37e59146e15b

Write 79739f27-6baf-4f91-9b82-37e59146e15c

Service d58c360d-08eb-4106-8b9a-d3c3ebffbf51

SER Read d58c360d-08eb-4106-8b9a-d3c3ebffbf52

Write d58c360d-08eb-4106-8b9a-d3c3ebffbf53

Service 3fdfbece-8c96-4420-a325-2d9a8ebe8044

QPS Read 3fdfbece-8c96-4420-a325-2d9a8ebe8045

Write 3fdfbece-8c96-4420-a325-2d9a8ebe8046

Custom

Service 4175a295-911a-4234-ba82-29e1becd149f

PI Read 4175a295-911a-4234-ba82-29e1becd149d

Write 4175a295-911a-4234-ba82-29e1becd149e

Service aa84c01b-6112-4701-88d8-5982764bbf11

DI Read aa84c01b-6112-4701-88d8-5982764bbf12

Write aa84c01b-6112-4701-88d8-5982764bbf13

Table B.1: UUIDs mapped to BRSKI-PRM REST routes

71

C Certificates

C.1 Pledge Certificate

1 Certificate :
2 Data:
3 Version : 3 (0 x2)
4 Serial Number : 49 (0 x31)
5 Signature Algorithm : ecdsa -with - SHA256
6 Issuer :
7 commonName = masa -ca. example .com CA
8 Validity
9 Not Before : Oct 23 17:22:26 2024 GMT

10 Not After : Oct 23 17:22:26 2025 GMT
11 Subject :
12 serialNumber = 00-D0 -E5 -F2 -00 -02
13 Subject Public Key Info:
14 Public Key Algorithm : id - ecPublicKey
15 Public -Key: (256 bit)
16 pub:
17 04:3c:3c:ba :08:2b:8a:99:1f :92:44:1 c:2e :42:69:
18 6b:47: af:be :02:1b:7b :20:44:11:6 a:25: ba:ff :07:
19 91:7b:5c:9d:60: ee :86: f2:b9:9c :42:47: b7:e6 :23:
20 c9 :23:97:4 f:0d:cf :04:27: fc:9e:44: f3:5b :11:03:
21 d9 :73:45:1 f:95
22 ASN1 OID: prime256v1
23 X509v3 extensions :
24 X509v3 Subject Alternative Name:
25 DNS :00-D0 -E5 -F2 -00 -02
26 X509v3 Subject Key Identifier :
27 C5 :7A:3C:6E:D8 :38:22: C5:C2:CA:D3:
28 9C:AC :25:2C:BD :02: FC :16: D9
29 X509v3 Basic Constraints : critical
30 CA: FALSE
31 1.3.6.1.5.5.7.1.32:
32 localhost :3000
33 Signature Algorithm : ecdsa -with - SHA256
34 30:45:02:20:7 b:b4:be :17:3d:e1 :82:03: a7:de :85:47: c4:1f:
35 59: e8 :46: d8:3f:5e:a9:9f:4d:b1:de :48:88: e8:cc:0b:4e:ac:
36 02:21:00:8 a :80:4c :88:48:70:35:75:3 a:3b :80:25:75: bd:1b:
37 78:5c :58:61: a4 :33:22:0 b:5f:4f :15:54:14:45:89:45: ed
38 -----BEGIN CERTIFICATE -----
39 MIIBmDCCAT6gAwIBAgIBMTAKBggqhkjOPQQDAjAhMR8wHQYDVQQDDBZtYXNhLWNh
40 LmV4YW1wbGUuY29tIENBMB4XDTI0MTAyMzE3MjIyNloXDTI1MTAyMzE3MjIyNlow
41 HDEaMBgGA1UEBQwRMDAtRDAtRTUtRjItMDAtMDIwWTATBgcqhkjOPQIBBggqhkjO
42 PQMBBwNCAAQ8PLoIK4qZH5JEHC5CaWtHr74CG3sgRBFqJbr / B5F7XJ1g7obyuZxC
43 R7fmI8kjl08NzwQn / J5E81sRA9lzRR + Vo2wwajAcBgNVHREEFTATghEwMC1EMC1F

73

C Certificates

44 NS1GMi0wMC0wMjAdBgNVHQ4EFgQUxXo8btg4IsXCytOcrCUsvQL8FtkwDwYDVR0T
45 AQH/ BAUwAwEBADAaBggrBgEFBQcBIAQObG9jYWxob3N0OjMwMDAwCgYIKoZIzj0E
46 AwIDSAAwRQIge7S + Fz3hggOn3oVHxB9Z6EbYP16pn02x3kiI6MwLTqwCIQCKgEyI
47 SHA1dTo7gCV1vRt4XFhhpDMiC19PFVQURYlF7Q ==
48 -----END CERTIFICATE -----

Listing C.1:MASA issued Pledge EE Certificate (IdevID)

C.2 Registrar-Agent Certificate

1 Certificate :
2 Data:
3 Version : 3 (0 x2)
4 Serial Number :
5 1b:1e:0b:7b:5e:7c:a0:6b:76: b0:fd:cd:
6 9a:84: dd:da :32:59:4 f:f1
7 Signature Algorithm : ecdsa -with - SHA256
8 Issuer :
9 organizationalUnitName

10 = Department of Computer Science
11 organizationName
12 = University of Applied Sciences Munich
13 localityName = Munich
14 stateOrProvinceName = Bavaria
15 countryName = DE
16 commonName
17 = registrar -ca. example .com Root CA
18 Validity
19 Not Before : Oct 23 17:22:26 2024 GMT
20 Not After : Nov 20 17:22:26 2024 GMT
21 Subject :
22 organizationalUnitName
23 = Department of Computer Science
24 organizationName
25 = University of Applied Sciences Munich
26 localityName = Munich
27 stateOrProvinceName = Bavaria
28 countryName = DE
29 commonName
30 = registrar -agent. example .com
31 Subject Public Key Info:
32 Public Key Algorithm : id - ecPublicKey
33 Public -Key: (256 bit)
34 pub:
35 04: fe :15:09:85:54: ad:a5:c6 :6b:aa:8f :47:15: e2:
36 22: bb :98:0f:e0 :35: b8:ba:f0 :60:58:80:52: ff:ba:
37 03:06:17: f1:b5:7d:bf :46:37:60:94:03:43: cb:d3:
38 56: e7 :15: ef :72:4e:9f:e6:5d:2e:17:6d:4d :27:12:

74

C.3 Registrar Certificates

39 58:5d:ad :28:10
40 ASN1 OID: prime256v1
41 X509v3 extensions :
42 X509v3 Subject Alternative Name:
43 DNS:BRSKI Registrar -Agent
44 X509v3 Extended Key Usage:
45 TLS Web Client Authentication , Code Signing
46 X509v3 Subject Key Identifier :
47 7A:47: D7:BB :54: BA:BC:AA:DC:DB:E3:F8:6D:60: F2:
48 F5 :8A:23: C9 :55
49 X509v3 Basic Constraints : critical
50 CA:TRUE , pathlen :0
51 Signature Algorithm : ecdsa -with - SHA256
52 30:46:02:21:00: af:e6 :16:3f:9f:dc:e5:d3:b0:c6:7c:6e:83:
53 47: ae:cb :80:33:29:0 b:19:8d:87: d3:f1:ff :57: c4:2d:4f:c8:
54 4e :02:21:00: ac:d6:c4 :14:4a:25: e4:cb :30:92:02: c5 :35:9d:
55 a3 :38: b7:e1:af:b8 :38: d2:5e:eb:9d:f4 :70: d4 :76:42:64:4 c
56 -----BEGIN CERTIFICATE -----
57 MIIC3jCCAoOgAwIBAgIUGx4Le158oGt2sP3NmoTd2jJZT / EwCgYIKoZIzj0EAwIw
58 gbQxKTAnBgNVBAMMIHJlZ2lzdHJhci1jYS5leGFtcGxlLmNvbSBSb290IENBMQsw
59 CQYDVQQGDAJERTEQMA4GA1UECAwHQmF2YXJpYTEPMA0GA1UEBwwGTXVuaWNoMS4w
60 LAYDVQQKDCVVbml2ZXJzaXR5IG9mIEFwcGxpZWQgU2NpZW5jZXMgTXVuaWNoMScw
61 JQYDVQQLDB5EZXBhcnRtZW50IG9mIENvbXB1dGVyIFNjaWVuY2UwHhcNMjQxMDIz
62 MTcyMjI2WhcNMjQxMTIwMTcyMjI2WjCBrzEkMCIGA1UEAwwbcmVnaXN0cmFyLWFn
63 ZW50LmV4YW1wbGUuY29tMQswCQYDVQQGDAJERTEQMA4GA1UECAwHQmF2YXJpYTEP
64 MA0GA1UEBwwGTXVuaWNoMS4wLAYDVQQKDCVVbml2ZXJzaXR5IG9mIEFwcGxpZWQg
65 U2NpZW5jZXMgTXVuaWNoMScwJQYDVQQLDB5EZXBhcnRtZW50IG9mIENvbXB1dGVy
66 IFNjaWVuY2UwWTATBgcqhkjOPQIBBggqhkjOPQMBBwNCAAT + FQmFVK2lxmuqj0cV
67 4 iK7mA/ gNbi68GBYgFL /ugMGF/ G1fb9GN2CUA0PL01bnFe9yTp / mXS4XbU0nElhd
68 rSgQo3YwdDAgBgNVHREEGTAXghVCUlNLSSBSZWdpc3RyYXItQWdlbnQwHQYDVR0l
69 BBYwFAYIKwYBBQUHAwIGCCsGAQUFBwMDMB0GA1UdDgQWBBR6R9e7VLq8qtzb4 /ht
70 YPL1iiPJVTASBgNVHRMBAf8ECDAGAQH / AgEAMAoGCCqGSM49BAMCA0kAMEYCIQCv
71 5hY/ n9zl07DGfG6DR67LgDMpCxmNh9Px /1 fELU/ ITgIhAKzWxBRKJeTLMJICxTWd
72 ozi34a +4 ONJe6530cNR2QmRM
73 -----END CERTIFICATE -----

Listing C.2: Registrar-Agent EE certificate

C.3 Registrar Certificates

1 Certificate :
2 Data:
3 Version : 3 (0 x2)
4 Serial Number :
5 4b:ae :29:1 a :90:81: bd:cf:1d :15:83
6 :15:15:40: b9:e9:b2:ed:3b:2a
7 Signature Algorithm : ecdsa -with - SHA256
8 Issuer :

75

C Certificates

9 organizationalUnitName
10 = Department of Computer Science
11 organizationName
12 = University of Applied Sciences Munich
13 localityName = Munich
14 stateOrProvinceName = Bavaria
15 countryName = DE
16 commonName
17 = registrar -ca. example .com Root CA
18 Validity
19 Not Before : Oct 23 17:22:26 2024 GMT
20 Not After : Oct 23 17:22:26 2025 GMT
21 Subject :
22 organizationalUnitName
23 = Department of Computer Science
24 organizationName
25 = University of Applied Sciences Munich
26 localityName = Munich
27 stateOrProvinceName = Bavaria
28 countryName = DE
29 commonName
30 = registrar -ca. example .com Root CA
31 Subject Public Key Info:
32 Public Key Algorithm : id - ecPublicKey
33 Public -Key: (256 bit)
34 pub:
35 04: f3 :92:0d:7a:21:3a:5a:b4 :02:9f :11:65: d2:e0:
36 1c:6c:7a:b0:1e :29:47:4 f:c6:eb:3f:9e:56:8b:01:
37 4e:b5 :81:78:22:36:62:6 f:f0:bb:b7 :52: b6 :77:85:
38 38: a3 :93:19: a1 :15:90: fb:1f:f1:7b:0e:83: de :51:
39 b8:cb :08:91: a4
40 ASN1 OID: prime256v1
41 X509v3 extensions :
42 X509v3 Authority Key Identifier :
43 keyid:FC:3A:AD:3A:1B:61: C6:5F:06
44 :A0:E7:DE :34:7B:E0:4F:FD :66: A5 :37
45

46 X509v3 Key Usage: critical
47 Certificate Sign , CRL Sign
48 X509v3 Subject Key Identifier :
49 FC :3A:AD :3A:1B:61: C6:5F:06: A0:
50 E7:DE :34:7B:E0:4F:FD :66: A5 :37
51 X509v3 Basic Constraints : critical
52 CA:TRUE
53 Signature Algorithm : ecdsa -with - SHA256
54 30:45:02:20:5 b:05: f9:8d:62:1f:ad:d9:b6:5b:c5:2b:73: b7:
55 34: f9:0f:e2 :04: fe :50: af:4e:d5 :06: f6 :91: d7 :22:77:56:8 e:
56 02:21:00:93:33: d3:d5:af:1c:b5:ff :77:19:20:12:14: de:eb:
57 19: a8 :03:2b:6b:38: d7 :42: f2 :91:6d:f9 :53: e8 :73: ae:e0

76

C.3 Registrar Certificates

58 -----BEGIN CERTIFICATE -----
59 MIICzzCCAnWgAwIBAgIUS64pGpCBvc8dFYMVFUC56bLtOyowCgYIKoZIzj0EAwIw
60 gbQxKTAnBgNVBAMMIHJlZ2lzdHJhci1jYS5leGFtcGxlLmNvbSBSb290IENBMQsw
61 CQYDVQQGDAJERTEQMA4GA1UECAwHQmF2YXJpYTEPMA0GA1UEBwwGTXVuaWNoMS4w
62 LAYDVQQKDCVVbml2ZXJzaXR5IG9mIEFwcGxpZWQgU2NpZW5jZXMgTXVuaWNoMScw
63 JQYDVQQLDB5EZXBhcnRtZW50IG9mIENvbXB1dGVyIFNjaWVuY2UwHhcNMjQxMDIz
64 MTcyMjI2WhcNMjUxMDIzMTcyMjI2WjCBtDEpMCcGA1UEAwwgcmVnaXN0cmFyLWNh
65 LmV4YW1wbGUuY29tIFJvb3QgQ0ExCzAJBgNVBAYMAkRFMRAwDgYDVQQIDAdCYXZh
66 cmlhMQ8wDQYDVQQHDAZNdW5pY2gxLjAsBgNVBAoMJVVuaXZlcnNpdHkgb2YgQXBw
67 bGllZCBTY2llbmNlcyBNdW5pY2gxJzAlBgNVBAsMHkRlcGFydG1lbnQgb2YgQ29t
68 cHV0ZXIgU2NpZW5jZTBZMBMGByqGSM49AgEGCCqGSM49AwEHA0IABPOSDXohOlq0
69 Ap8RZdLgHGx6sB4pR0 /G6z+ eVosBTrWBeCI2Ym / wu7dStneFOKOTGaEVkPsf8XsO
70 g95RuMsIkaSjYzBhMB8GA1UdIwQYMBaAFPw6rTobYcZfBqDn3jR74E /9 ZqU3MA4G
71 A1UdDwEB / wQEAwIBBjAdBgNVHQ4EFgQU / DqtOhthxl8GoOfeNHvgT /1 mpTcwDwYD
72 VR0TAQH / BAUwAwEB / zAKBggqhkjOPQQDAgNIADBFAiBbBfmNYh + t2bZbxStztzT5
73 D+IE/ lCvTtUG9pHXIndWjgIhAJMz09WvHLX / dxkgEhTe6xmoAytrONdC8pFt +VPo
74 c67g
75 -----END CERTIFICATE -----

Listing C.3: Registrar Certificate Authority certificate

1 Certificate :
2 Data:
3 Version : 3 (0 x2)
4 Serial Number :
5 15: bb:1b:a2 :30:0c:6d:ab:7d:82:1c:19
6 :36: ac :2b:64: c0 :77:93:78
7 Signature Algorithm : ecdsa -with - SHA256
8 Issuer :
9 organizationalUnitName

10 = Department of Computer Science
11 organizationName
12 = University of Applied Sciences Munich
13 localityName = Munich
14 stateOrProvinceName = Bavaria
15 countryName = DE
16 commonName
17 = registrar -ca. example .com Root CA
18 Validity
19 Not Before : Oct 23 17:22:26 2024 GMT
20 Not After : Oct 23 17:22:26 2025 GMT
21 Subject :
22 organizationalUnitName
23 = Department of Computer Science
24 organizationName
25 = University of Applied Sciences Munich
26 localityName = Munich
27 stateOrProvinceName = Bavaria
28 countryName = DE
29 commonName = registrar . example .com

77

C Certificates

30 Subject Public Key Info:
31 Public Key Algorithm : id - ecPublicKey
32 Public -Key: (256 bit)
33 pub:
34 04: fa:da :04: d6 :20:8c:a0 :47: c1 :70:99:5 b:99:7d:
35 7e :48:0b:7a:8b :62:35:84:3 f:d4 :62:2d:59:0c:28:
36 f4 :4f:c3:bd :78: c8:f1:7f:fc:2a:ca:2f :08:36: ab:
37 c0:cc:2c:c2:c2 :36: b7 :06:97: a0 :48: fa :09:0c:12:
38 f7 :99:2c:c1:e9
39 ASN1 OID: prime256v1
40 X509v3 extensions :
41 X509v3 Authority Key Identifier :
42 keyid:FC:3A:AD:3A:1B:61: C6:5F:06:
43 A0:E7:DE :34:7B:E0:4F:FD :66: A5 :37
44

45 X509v3 Key Usage: critical
46 Certificate Sign
47 X509v3 Extended Key Usage:
48 1.3.6.1.5.5.7.3.28
49 Signature Algorithm : ecdsa -with - SHA256
50 30:45:02:20:13: a9 :79: d1 :38:3a:6a:b8:8f:41:9b:fb:cf:8b:
51 81:40:57:37:93:73: bd:9c:f7:8d:64: f6:ae :91: b1:8e:fa :46:
52 02:21:00: b2:ce:be:5a:2d:1c :65:31: ba:e6:d1:0d:bd:f5:d3:
53 3b :78:71:71:04:36:49:90:54:90: ef:b4:b9:8a:6a:6e:77
54 -----BEGIN CERTIFICATE -----
55 MIICqTCCAk + gAwIBAgIUFbsbojAMbat9ghwZNqwrZMB3k3gwCgYIKoZIzj0EAwIw
56 gbQxKTAnBgNVBAMMIHJlZ2lzdHJhci1jYS5leGFtcGxlLmNvbSBSb290IENBMQsw
57 CQYDVQQGDAJERTEQMA4GA1UECAwHQmF2YXJpYTEPMA0GA1UEBwwGTXVuaWNoMS4w
58 LAYDVQQKDCVVbml2ZXJzaXR5IG9mIEFwcGxpZWQgU2NpZW5jZXMgTXVuaWNoMScw
59 JQYDVQQLDB5EZXBhcnRtZW50IG9mIENvbXB1dGVyIFNjaWVuY2UwHhcNMjQxMDIz
60 MTcyMjI2WhcNMjUxMDIzMTcyMjI2WjCBqTEeMBwGA1UEAwwVcmVnaXN0cmFyLmV4
61 YW1wbGUuY29tMQswCQYDVQQGDAJERTEQMA4GA1UECAwHQmF2YXJpYTEPMA0GA1UE
62 BwwGTXVuaWNoMS4wLAYDVQQKDCVVbml2ZXJzaXR5IG9mIEFwcGxpZWQgU2NpZW5j
63 ZXMgTXVuaWNoMScwJQYDVQQLDB5EZXBhcnRtZW50IG9mIENvbXB1dGVyIFNjaWVu
64 Y2UwWTATBgcqhkjOPQIBBggqhkjOPQMBBwNCAAT62gTWIIygR8FwmVuZfX5IC3qL
65 YjWEP9RiLVkMKPRPw714yPF // CrKLwg2q8DMLMLCNrcGl6BI + gkMEveZLMHpo0gw
66 RjAfBgNVHSMEGDAWgBT8Oq06G2HGXwag5940e +BP/ WalNzAOBgNVHQ8BAf8EBAMC
67 AgQwEwYDVR0lBAwwCgYIKwYBBQUHAxwwCgYIKoZIzj0EAwIDSAAwRQIgE6l50Tg6
68 ariPQZv7z4uBQFc3k3O9nPeNZPaukbGO + kYCIQCyzr5aLRxlMbrm0Q299dM7eHFx
69 BDZJkFSQ77S5impudw ==
70 -----END CERTIFICATE -----

Listing C.4: Registrar EE certificate

C.4 MASA Certificates

1 Certificate :
2 Data:

78

C.4 MASA Certificates

3 Version : 3 (0 x2)
4 Serial Number :
5 65:58:31:04:63: d2 :57:9e:9c:
6 ba :9d:4b:35: c5:b7 :48:0d :75:29:42
7 Signature Algorithm : ecdsa -with - SHA256
8 Issuer :
9 commonName

10 = masa -ca. example .com CA
11 Validity
12 Not Before : Oct 23 17:22:26 2024 GMT
13 Not After : Oct 23 17:22:26 2999 GMT
14 Subject :
15 commonName
16 = masa -ca. example .com CA
17 Subject Public Key Info:
18 Public Key Algorithm : id - ecPublicKey
19 Public -Key: (256 bit)
20 pub:
21 04:07: ef:9f:3b:a1:e8 :93: a7:b0:8e :22:58:30:25:
22 54:57: ad :10: ce:1a:17: ed :28: a0:b7 :15:5e:bf:a6:
23 e5:cb:9e:fe :15:53: b5 :32:42:11:39:25: a3 :65: b1:
24 5b:b0:cc :84:46:82: f9:ef :96:63:82:6 c:bc :79: c4:
25 ce:d7:4a:cd :34
26 ASN1 OID: prime256v1
27 X509v3 extensions :
28 X509v3 Authority Key Identifier :
29 keyid:C8:6D :77:73: AC :91: D5:E4 :97
30 :27:9C:A8:B6:CC :79:80:5 D:E2:2F:E7
31

32 X509v3 Key Usage: critical
33 Certificate Sign , CRL Sign
34 X509v3 Subject Key Identifier :
35 C8 :6D :77:73: AC :91: D5:E4 :97:27:9 C
36 :A8:B6:CC :79:80:5 D:E2:2F:E7
37 X509v3 Basic Constraints : critical
38 CA:TRUE
39 Signature Algorithm : ecdsa -with - SHA256
40 30:46:02:21:00: ef:d0:6c:76:8b:25:3e:d7:f8:d5:4f:e6 :36:
41 8d:1c:26: d6:f7:ec :29: b1 :68:2a:b3:a6 :95: b7:ef:7e:c5 :48:
42 57:02:21:00: c8:0d:67: f6:cb :87:66: ee :89: a2 :95:5f:75: a2:
43 82:70:66:79:51:22:5 c:46: c2:b3 :59: f4:b1:3b :85:76:39:1 b
44 -----BEGIN CERTIFICATE -----
45 MIIBqjCCAU + gAwIBAgIUZVgxBGPSV56cup1LNcW3SA11KUIwCgYIKoZIzj0EAwIw
46 ITEfMB0GA1UEAwwWbWFzYS1jYS5leGFtcGxlLmNvbSBDQTAgFw0yNDEwMjMxNzIy
47 MjZaGA8yOTk5MTAyMzE3MjIyNlowITEfMB0GA1UEAwwWbWFzYS1jYS5leGFtcGxl
48 LmNvbSBDQTBZMBMGByqGSM49AgEGCCqGSM49AwEHA0IABAfvnzuh6JOnsI4iWDAl
49 VFetEM4aF +0 ooLcVXr + m5cue/ hVTtTJCETklo2WxW7DMhEaC +e+ WY4JsvHnEztdK
50 zTSjYzBhMB8GA1UdIwQYMBaAFMhtd3OskdXklyecqLbMeYBd4i / nMA4GA1UdDwEB
51 / wQEAwIBBjAdBgNVHQ4EFgQUyG13c6yR1eSXJ5yotsx5gF3iL + cwDwYDVR0TAQH /

79

C Certificates

52 BAUwAwEB / zAKBggqhkjOPQQDAgNJADBGAiEA79BsdoslPtf41U / mNo0cJtb37Cmx
53 aCqzppW3737FSFcCIQDIDWf2y4dm7omilV91ooJwZnlRIlxGwrNZ9LE7hXY5Gw ==
54 -----END CERTIFICATE -----

Listing C.5:MASA CA certificate

1 Certificate :
2 Data:
3 Version : 3 (0 x2)
4 Serial Number :
5 3f:28: fe :86:87: f9:d9:cc :71:5e:
6 23:9f:cf:f5 :1b:a6:bf:9d:30:2c
7 Signature Algorithm : ecdsa -with - SHA256
8 Issuer :
9 commonName = masa -ca. example .com CA

10 Validity
11 Not Before : Oct 23 17:22:26 2024 GMT
12 Not After : Oct 23 17:22:26 2999 GMT
13 Subject :
14 commonName = masa -ca. example .com MASA
15 Subject Public Key Info:
16 Public Key Algorithm : id - ecPublicKey
17 Public -Key: (256 bit)
18 pub:
19 04: a5 :62: c3:2f:a9:ee :34:71: c0:c9 :97:9e :22:22:
20 9c :97:22:8 d:3b:e5 :07:92: ed :46:77:53:9 d:1e:d5:
21 ce:c2 :48:6b:e0:5f:bf:5c :00:69:04:68:49: e6 :59:
22 0f:a2 :33: d4 :23: c7 :28: f1:d8:0d:00: cc:4b:e8:fe:
23 ce :9b:7b:2e:2c
24 ASN1 OID: prime256v1
25 X509v3 extensions :
26 X509v3 Authority Key Identifier :
27 keyid:C8:6D :77:73: AC :91: D5:E4 :97:
28 27:9C:A8:B6:CC :79:80:5 D:E2:2F:E7
29

30 X509v3 Subject Key Identifier :
31 B5:E9:DB:D0 :12: ED:D2 :66:5F:DC:
32 CE :7B:7E:53: DA :59: F6:AD:9B:7C
33 X509v3 Basic Constraints : critical
34 CA: FALSE
35 Signature Algorithm : ecdsa -with - SHA256
36 30:44:02:20:75: a7:2b:9c:3a:b9:7f:9c:b7:c5:9e:6d:f9 :73:
37 40:2a:37: be :93: d9 :41: dc :94:56:71:2 a:b1:bc:b6:de :06:94:
38 02:20:3 e:58: ef :14:85:22:14: f4:a4:9b:38:8f :65:07:5 f:ab:
39 68:48:48: dc :5e:f3:a3 :02:9b:41:5a:f6 :05:51:56:92
40 -----BEGIN CERTIFICATE -----
41 MIIBmjCCAUGgAwIBAgIUPyj + hof52cxxXiOfz /Ubpr+ dMCwwCgYIKoZIzj0EAwIw
42 ITEfMB0GA1UEAwwWbWFzYS1jYS5leGFtcGxlLmNvbSBDQTAgFw0yNDEwMjMxNzIy
43 MjZaGA8yOTk5MTAyMzE3MjIyNlowIzEhMB8GA1UEAwwYbWFzYS1jYS5leGFtcGxl
44 LmNvbSBNQVNBMFkwEwYHKoZIzj0CAQYIKoZIzj0DAQcDQgAEpWLDL6nuNHHAyZee

80

C.4 MASA Certificates

45 IiKclyKNO + UHku1Gd1OdHtXOwkhr4F +/ XABpBGhJ5lkPojPUI8co8dgNAMxL6P7O
46 m3suLKNTMFEwHwYDVR0jBBgwFoAUyG13c6yR1eSXJ5yotsx5gF3iL + cwHQYDVR0O
47 BBYEFLXp29AS7dJmX9zOe35T2ln2rZt8MA8GA1UdEwEB / wQFMAMBAQAwCgYIKoZI
48 zj0EAwIDRwAwRAIgdacrnDq5f5y3xZ5t + XNAKje + k9lB3JRWcSqxvLbeBpQCID5Y
49 7 xSFIhT0pJs4j2UHX6toSEjcXvOjAptBWvYFUVaS
50 -----END CERTIFICATE -----

Listing C.6:MASA EE certificate.txt

81

D Images

83

D Images

Figure D.1: The Flutter Application showing the scan for devices screen

84

Figure D.2: The Flutter Application showing a debug panel with device characteristics

85

	Acknowledgments
	Abstract
	Contents
	1 Introduction
	1.1 Motivation & Relevancy
	1.2 Scope
	1.3 Research Questions

	2 Related Work
	2.1 Pre-provisioned Keys
	2.2 Embedded Attestation
	2.3 ACME
	2.4 Enrollment over Secure Transport
	2.5 BRSKI

	3 Background
	3.1 Enrollment
	3.2 Bluetooth Low Energy
	3.3 The Rust Programming Language
	3.4 BRSKI-PRM
	3.5 cBRSKI

	4 Requirements
	5 Architecture
	5.1 Pledge
	5.2 Registrar-Agent
	5.3 Domain-Registrar
	5.4 MASA
	5.5 Proposed Protocol Extension

	6 Implementation
	6.1 BRSKI-PRM Prototype
	6.2 cBRSKI-PRM
	6.2.1 Switching from JSON to CBOR
	6.2.2 Bluetooth Low Energy

	6.3 Android Registrar-Agent
	6.4 ESP32 Prototype
	6.4.1 Research and Setup
	6.4.2 Pre-Enrollment Status Query
	6.4.3 ESP32 firmware

	7 Evaluation
	7.1 Comparison of BRSKI-PRM and cBRSKI-PRM
	7.2 Attack Vectors

	8 Discussion & Future Work
	9 Conclusion
	List of Figures
	List of Listings
	List of Tables
	Bibliography
	Glossary
	A Listings
	B Tables
	C Certificates
	C.1 Pledge Certificate
	C.2 Registrar-Agent Certificate
	C.3 Registrar Certificates
	C.4 MASA Certificates

	D Images

